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CHAPTER I

INTRODUCTION

The problem of acquisition and identification of a landmark with-
in a given field of view is treated here from two points of view:

1, Identification of a landmark:

2. Estimation of its translation and rotation with respect
to the reference frame.

One application of this approach is to a navigation problem. One
may have a photograph of an island and the coordinates and altitude at
which the photograph was recorded. If at a later time a camera carrying
vehicle flies over this island at the same altitude, then as the island
comes into the field of view of the camera, one can, by the approach
presented here, estimate position (translation) and orientation ( rotation)
of the craft with respect to the island. These estimates then could be
used to command the propulsion system and navigate the vehicle.

In addition to applications in landmark identification and acquisi-
tion,this approach is potentially useful in problems of automatic docking
since it permits measurement of rotation and translation of the docking
target with respect to docking craft ( command module). This means a
television camera onboard the docking craft takes a picture of the docking
target. By detection of the rotation and translation of the docking target
with respect to the stored reference, the docking craft can position itself
for automatic docking.

The approach presented here requires edge enhancement
so that the boundaries of the landmark are detected and uses the informa-
tion contained in the boundary of the pattern by successively reading the
coordinates of the boundary and developing a nonlinear regression analysis
technique for simultaneous estimation of rotation and translation of the
landmark. This method appears to be very sensitive and offers high
resolution both in rotation and translation parameters.



In this research only two-dimensional landmarks or patterns
were considered. Specifically patterns in the form of ellipses and
rectangles were first considered., The motivation for these two classes
was to consider a class of simple shapes that can be analytically repre-
sented, and another class that could not be analytically represented. In
addition, different amounts of sensor noise and measurement noise were
added to the coordinates of the boundary points to check the performance
of this method under a variety of circumstances.

While some alternative methods such as detection of centroid, etc.,
may be more useful for recognition of rectangles and ellipses, noting
that by recognition we mean measuring rotation, translation and size of
a pattern, it was felt necessary to consider a more general approach
that would be applicable to more classes of two dimensional patterns
as well as three-dimensional patterns,

Since the method is based on tracking the boundary of a pattern,
a review of the state of the art in boundary tracking and its application
in pattern recognition, estimation, etc.,, is provided in Chapter II under
the title of quantization and encoding of arbitrary curves, In Chapter
111, the fundamental nonlinear regression analysis approach is discussed.
In Chapter IV the recognition of elliptical planar patterns is presented.
In Chapter V the recognition of rectangular planar patterns is discussed,
Conclusions, a summary of the results, and potential future research
areas are discussed in Chapter VI. For use of interested readers, the
main computer program is also documented in an appendix.



CHAPTER U1

QUANTIZATION AND ENCODING OF
ARBITRARY CURVES

This chapter is concerned with a review of approaches to boundary
tracking and implementation of the boundary information in recognition,
coding, estimation, etc. A more common name associated with this
area has been contour tracing which has been used in the field of pattern
recognition and specifically in feature extraction techniques,

In the general problem of pattern recognition, many researchers
feel that "contours carry a significant fraction of the information re-
quired for recognition of image objects"[ 1] . Since the recognition
scheme developed in this research uses contour information exclusively,
it seems appropriate to review some of the work which has been done in
this area,

Since most pattern recognition schemes are carried out on a
digital computer, it is necessary to be able to represent a pattern in a
form which may be easily manipulated by a digital computer, More
specifically, if one is given a pictorial representation of some planar
configuration, it is desirable to quantize and encode the boundary curve
of this pattern into a form such that the digital computer can easily find
such properties of the pattern as area, length of the boundary curve,
width, height, and others to be discussed later.

A great deal of work in quantizing and encoding arbitrary plane
curves has been done by many researchers. [2-9] It is the intent of this
chapter to review some of this research, particularly that of the chain
representation as developed by H, Freeman. [ 10-16]

Of the many ways in which an arbitrary planar curve ( assumed to
be continuous) may be quantized, a particularly simple technique is
called the grid-intersect quantization method. In this method the curve
is placed over a square grid, and the grid node lying closest to the
point of intersection of the curve with a given grid line is considered to
be a point on the quantized curve. Such a grid node is called a curve
point. This procedure is illustrated in Figure 1, where the separation
between adjacent grid nodes is T.
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Fig, 1--Node points for a continuous curve.

The lines connecting adjacent curve points have length T or
N2 T, as seen from Figure 1. The quantized curve becomes a bhetter
approximation to the original curve as the grid separation, T, becomes
small compared to the smallest instantaneous radius of curvature of
the original curve, Freeman [ 11] points out that the grid intersect
quantization method has an advantage over similar quantization tech-
nigues in that it comes the closest to giving equal probability to the
occurrence of adjacent curve points which are diagonal, For an arbi-
trary curve one would expect one half of the adjacent curve points to be
connected by diagonal lines and one half to be connected by horizontal
and vertical lines.

Once the curve points have been determined, it is desirable to
encode these points in some manner that affords economy in computer
storage requirements and permits analytical manipulations of the pattern
to be accomplished. One obvious encoding would be to simply store the
coordinates of each of the curve points. However, even for a relatively
coarse grid ( say 1024 by 1024), each curve point would require 10 bits
for each of its coordinates. A more economical encoding scheme takes
advantage of the fact that since the curve which was quantized is con-
tinuous, then successive curve points must be adjacent, as shown pic-
torially in Figure 2. The center node is assumed to be a curve point
and the next curve point must be one of the eight nodes shown.

If the straight lines which join the center node with each of the
surrounding eight nodes are assigned the same number as the correspond-
ing outer node, then the original curve may be represented by a sequence
of short line segments, with each line segment encoded by an integer



Fig. 2--Numbering scheme for adjacent curve
points.

(XO 1y°)

Fig. 3--Chain representation of a continuous
curve,



between 0 and 7. A line segment connecting two adjacent curve points

is referred to as an element, and the sequence of elements which repre-
sents the curve is called a chain. Thus, curve A in Figure 3 mmay be
represented by the straight line segment curve B which is characterized
by the chain 112221107765667. If the absolute location of curve A is
required with respect to the x-y coordinate system, then the starting
point, or initium, of the chain must be specified. In this case it is
denoted by (xy, Vo). It is apparent that the dimension of the measure-
ment space has been drastically reduced since now, with the exception
of the starting point, each element ( and therefore each curve point)
requires only 3 bits of computer storage to specify it compared to 20 bits
which are necessary to specify the coordinates of each curve point.
Actually, if the value of a given element is known, then the next element,
in general, will not assume each of its eight possible values with equal
probability., This fact can be used to further increase the coding
efficiency by employing a chain-difference encoding scheme. [ 11]

The chain B, which is the straight line segment representation
of curve A in Figure 3, may be written using the chaining or '"concate-
nation'' operator C defined by

szlbz—-—bn=_ bi

1

n Qs

1

where b; =0,1,2,3,4,5,6, or 7

and the element b; connects curve points i -1 and i, It is apparent that
the number of elements in a chain will be proportional to the length of
the curve and inversely proportional to the grid separation, T. Further-
more, for a curve that is quantized into n curve points, the associated
chain will have n-1 elements if the curve is open, and n elements if the
curve is closed. It is also readily apparent that the angle which an
element makes with respect to the positive x-axis is simply the element
value multiplied by 45°,

Before considering some of the properties which chains possess,
a few of the ambiguities in the chain representation should be pointed
out. Consider, for instance, the chain given in Figure 3, If the abso-
lute position of this chain is not important, then the coordinates of the
initium, (x5, v, ), can be disregarded and the chain is given by
112221107765667 as before. However, the chain may also be written as
322123345566655, This chain represents exactly the same straight line
segment curve, but traced in the reverse direction. Chains possessing
this property are called inverses. Similarly, elements whose slopes
differ by 180° are called inverse elements. Therefore, the elements



-1
a; and a; are inverses if

-1

where the symbol ¥ designates modulo eight addition, Thus, an inverse
chain is obtained by finding the inverse elements of the elements of the
original chain and then reversing the order of the inverse elements,

From the above discussion it is apparent that any simple open
curve (no self-intersections) has two chain representations, each being
the inverse of the other. A simple closed curve, on the other hand,
may be represented by any one of 2n different chains. This is due to
the fact that there is no unique starting point for the chain; in fact, the
chain can start at any one of the n curve points to give a total of n
different chain representations. Some of the ambiguity in the chain
representation of a closed curve can be eliminated if, for instance, the
curve is always traversed in the clockwise direction, and the starting
point is always chosen to be the curve point which is nearest to the origin,

It is now appropriate to consider some of the properties which
chains possess. These properties may then be incorporated into a
variety of pattern classification schemes. It is seen that a chain is
invariant with translation; that is to say, a chain becomes fixed in a
coordinate system only after the coordinates of its initium have been
specified. A chain may be rotated by k*45° by the modulo eight addition
of k to each element of the chain, where k is an integer. However, the
rotation is distortion-free only when k is an even integer, since when
k is an odd integer the length of any element in the original chain is
changed from T to N2 T or vice versa,

The length of a chain may be directly computed by counting the
number of even elements, ne, and the number of odd elements, ng.
Since an even element has length T, while an odd element has length
N 2 T, the length of the chain is simply

L

ng T+noN2T

(ne +ngN2) T

If n, the total number of elements of the chain, is large then the
length of the chain may be approximated by

L~(1+4.414p) nT

where p is the fraction of the adjacent curve points which are diagonal
for the particular quantization method being used. Since p = 0.41 for



grid-intersect quantization [ 11] , the length of a long chain is approxi-
mately

L®1.17nT

The beight and width of a chain may also be simply computed.
The x and y components, ax; and ay;» of each of the elements a; are
shown as follows:

4 % Py
0 T 0 )
1 T T
2 0 T
3 -T T
4 -T 0
5 -T -T
6 0 -T
7 T -T

The height is then found by subtracting the chain's largest negative
deviation from the x-axis from the largest positive deviation. Thus,
the height is given by

H = (Hi)max - (Hi) min
where i=0,1,2,""", n
i
Hi =Z aYi
=1
and Hyo =0

Likewise, the width of a chain is given by
W= (Wi) max = (Wi) min

where i=0,1,2,""", n



and Wo

0
Notice that if H, = Wy = 0, then the chain is closed.

The area enclosed by a simple closed chain may also be simply
computed. It can be shown that the area is given by [ 10, 12]

n

Area =Z Ay, (H;_, +3 ayi)
i=1

The area will be a positive number if the chain is traversed in the clock-
wise direction, and a negative number if the chain is traversed in the
counterclockwise direction.

Many other properties of chains may also be determined which
can be employed in a pattern recognition scheme. For instance, it is
possible to determine the moments of a chain about specified axes, the
location of a chain's centroid, and the axes (if any) about which a chain
is symmetric. [ 12]

Two other useful properties involve correlation functions, i.e.,
autocoxl'lrelation and crosscorrelation. The autocorrelation function of a
chain C a; may be defined as

n
), e
i=1

i=1
for j=0,+1,+2,""", +4n

8=

6,,(i) =

The product ajaj 4 j is defined to be the cosine of the angle between
elements aj and aj 4 j. For convenience it is assumed that the chain C 2
. . . . . . 1=1

is periodic, having a maximum period of length n, Thus

2j 3 + kn
for k=0, +1, +2,°°°

The autocorrelation function is therefore defined for all j, being
periodic with maximum period of length n,



n m
The crosscorrelation function of two chains C a; and C b;
may be defined in two ways, 1=1 1=1

and

Spa(3) =r%1 Z 2j 4+ j by

depending upon which chain is shifted. Here again, both chains are
assumed to be periodic, i.e.,

aj ¥ 2aj + kn
bi = bj + km
for k=0, +1, +2,°°°

It is easy to see that the crosscorrelation function is also periodic,
having the same period as the length of the chain which is being shifted.
Thus,

$ab( ) = Pap(j + km)

for k=0, + 1, +2,---

If both chains have the same length (n = m), then
$abl-i) = dpali)

Since the autocorrelation function is not unique, i.e., several
patterns may possess the same autocorrelation function, it may only be
used to place the unknown pattern into a class of patterns., The cross-
correlation functions of the unknown pattern and all the patterns within
this selected class may then be compared for recognition purposes.
Generally the peak of each crosscorrelation function is determined, and
recognition is based on the pattern resulting in the maximum peak. The
crosscorrelation method has been quite effective in fitting a segment of
a curve to a larger curve, provided that the relative scale and orientation
are known for both curves. [ 15]

10



Another useful property of chains for recognition purposes is
the so-called directionality spectrum. This consists of tabulating the
number of elements of the chain having values 0 through 7. The direc-
tionality spectrum is then found by multiplying the number of odd-valued
elements by N 2, and drawing a bar graph of the results. A normalized
directionality spectrum may be obtained by dividing the number of
elements having any given value by the total number of elements
(ng +N2mny).

A property of chains which is rotation invariant is the curvature

property. [ 13] The curvature function of the chain 8 a; is defined
i=1

ui 43 =2a; 4 -2a3+8k
where k is chosen to be -1, 0, or 1 so that
loi+ 3] <4

The sequence uj 4+ 1 is seen to be the slope change ( curvature) of the chain
aj as it is traversed.

1=1

The number and location of the zero crossings of a smoothed
curvature function may then be used for recognition purposes. [ 13]

1



CHAPTER III

NONLINEAR REGRESSION ANALYSIS

3.1 Introduction

This chapter is concerned with the basic nonlinear regression
method of analysis that was developed for the purpose of landmark
tracking. Since the first class of patterns considered are ellipses,
in section 3. 2 representation of ellipse patterns are discussed. In
section 3. 3 the parameter estimation problem is formulated, and its
characteristics are delineated in sections 3. 3, 1 through 3. 3. 6.

3.2 Representation of the Ellipse Pattern

The equation of an ellipse whose major and minor axes are co-
incident with the w-z coordinate axes, as shown in Fig. 4,is given by

g(w,z) =2+ 22 _1=0 (3.1)
2 2
a b
or
g(w,z) =e;,w’ +e,2z> -1=0 (3.2)
where
c; = 1 , e, = 1 (3.3)
a2 : b2
2a = diameter of the ellipse in the w-direction
2b = diameter of the ellipse in the z-direction.

If one wishes to express the equation of this ellipse with respect
to an x-y coordinate system as shown in Fig. 5, the following transfor-
mation holds

w = (x-A) cos 0 + (y-B) sin 6 (3.4)

z=-(x-A) sin 6 + (y-B) cos 6 (3.5)

12



The equation for the ellipse in the x-y coordinate system then becomes

F(x,y) = g(w,z)
w = (x-A) cos 6 + (y-B) sin 6

z=-(x-A) sin 6 + (y-B) cos ©

2
e;[x-A) cos 8 ¥ (y-B) sin 6] + e,[ -(x-A) sin 6 + (y-B) cos e]z -1

[e;, cos? 8+ e, sin? 8] x*+ [2(e, -e,)cos 6 sin 6] xy

+[e; sin? 8+ e, cos’ 0] y°

+[-2e; cos 6(A cos 6 + B sin 8) -2e, sin 8 (A sin 6-Bcos 0)] x

4+ [-2e;, sin (A cos 6 + B sin 8) + 2e, cos 6( A sin ® - Bcos 0)] y

+[e;(Acos 6 + B sin )% + e,(A sin 6 - B cos 6)?]

-1 (3.6)
Eqn. (3.6) contains five parameters which completely describe the
ellipse. These parameters are e;, e,, A, B, and 6, One notes that
Egn. (3.6) is a nonlinear function of these parameters.

Equation ( 3, 6) may be transformed into a linear function of a
new set of parameters via a nonlinear transformation of the parameters,

To this end, let the original parameters be denoted by the vector ¢ and
the new parameters by the vector P, i.e.,

€, P1
e2 P2
T = A B = Ps
B P4
e Ps (3.7)

and denote the nonlinear transformation by ﬁf, i.e.,
<= T (B) (3.8)

In order to derive the nonlinear transformation of Eqn. ( 3.8) one may
rewrite Eqn. (3.6) as

F(x,y)=py x>+ pa xy+psy’ + py Xx+psy+ps -1=0 (3.9)

where

13



Fig, 4 --Ellipse in reference frame.

Fig. 5 --Rotated and translated ellipse,

2
A

‘;&*\9\""’

\ 26

PPy

Fig. 6 --Relation of 0 and p.
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P1 =

pz = 2(e;~-e;) cos B sin O (3.
ps =e; sin? @ + e, cos® O (3.
pe =- 2A(e; cos® 8 +e, sin® 0 )-2B(e;-e;) cos Osin 6 (3.

= e; cos® 6 + e, sin® O (3.10)

11)
12)

13)

ps=-2B(e; sin® © + e, cos? 0)-2A(e,-e,) cos 0 sin 0 (3.14)

pe=A%(e, cos? 0+ e, sin® 0) +B2(e1 sin® © + e, cos? 0)

+ 2AB(e, -e;) cos 6 sin © (3.

Eqn. (3.10)-(3.15) may be manipulated to obtain the values of the

15)

parameters e;, e, A, B, and 0 in terms of the parameters p,, p,, ps»

ps4r Ps5» and pg. From Eqn. (3.10), (3.11), and (3.13)

ps=-2Ap;-Bop, (3.

while Eqn. (3.11), (3.12), and ( 3. 14) yield

ps=-Apy -2Bpy (3.

Solving Egn. (3.16) and (3.17) simultaneously for A and B gives

_"2pspsatprPaps

16)

17)

A
2
4p1 ps - P2
(3.18)
-2p1ps tpzps
B = 5
4p1 ps -P2
(3.19)
From Eqn. (3.10) and (3. 12) one obtains
p1 +tps =1 +e; (3.20)
and p1-ps = (e, -e;)(cos® O - sin® @)
=(e;-e;) cos 2 0 (3.21)

15



while Eqn. (3.11) yields

pz=(e1-ez) Sinze (3.22)

Egn. (3.21) and ( 3. 22) then give

tan 260 =.-P2__

P1-Ps (3.23)
or
0 = -é- tan™? P2 (3- 24)
P1-Ps

If a right triangle having sides of length p, and p; ~ps is formed, then the
hypoteneuse has a length N p, 2 + (p;-ps)? as shown in Fig. 6. From

Fig. 6 it is apparent that

sin 2 6 = P2
'\/;zz +(pi-ps)?
(3.
Then from Egn. (3. 22) and ( 3. 25) one obtains
Np2?2 +(p1-ps)? =e -e, (3.
and then Eqn. (3. 20) and ( 3. 26) yield
ey=3(p1 +ps+Np2? +(p1-ps)? (3.
_l( - 2 ( _ 2 3
€, =z (p1 tpPs p2° +(p1-ps)?) (3.

Since only five independent parameters are required to fully
specify an ellipse, it is reasonable to expect that Eqn. (3.9) may be
simplified, Dividing Eqn. (3.9) by (pe-1) gives

F(%,7) =P 1%X% 4P, Xy +Psy> +Pax+psy+ 1 =0 (3.
where
p; = Pi fori=1,2,3,4,5 (3.
pe -1

16
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From Eqn, (3.18), (3.19), and ( 3. 24) one observes that A, B, and 0
are ratios of the '"p'" parameters where both numerators and denomina-
tors are of the same order, Thus, the denominator of Eqn,. ( 3. 30) will
cancel, making Eqn. (3.18), (3.19), and (3. 24) the same function of
the "p'" parameters as of the '"p' parameters. Therefore

A = ~2PsPyg t P2Ps
2
4 p1Ps -P2 (3.31)

B = 22P1Ps + P2 Py
2
4 p1Ps-P2 (3.32)

P1 -Ps
(3.33)

This is not the case for Eqn. (3. 27) and ( 3. 28), however. They become

er =(pe-1)3(p1+ps +Np22+(p1-ps)2) | (3.34)
e, = (pe-1)[3(p1+ pPs-~Npz2 +(p1-pPs)2 ) | (3.35)

From Eqn. (3.10), (3.12), and (3.15)
2
pe=A%p, +B°ps + ABp, (3.36)
Eqn. (3.30) and (3. 36) then give

pe-1=(A%p; +B%py + ABp,)-1

=[(pe-1)(A2 p; + B?py + AB p;) ] -1 (3.37)
or
pe-1= _1
A?p; + BZ2ps + ABp; -1 (3.38)

Making use of Egn. (3.31) and (3.32) further reduces Eqn. ( 3.38) to

pe-1l= 1

PiPs? + DPs P4%-P2P4Ps -
4 p1Ps-P2 2
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4 p1ps 'Pzz
+ PsP4 + P2° -P2P4Ps -4P1Ps

2
P1Ps (3.39)

By substituting Eqn. (3. 39) into Eqn. ( 3. 34) and ( 3. 35) the parameters
e; and e, become functions only of the '"p'' parameters,

p. 2
e, = - 24p123 P2 [%(Pl +ps +Np22 +(p1-ps)?) ]
P1Ps  + PsP+ + P2" -P2P4Ps -4P1Ps ( )
3.40
2 .
e, = 4 P1Ps P [2(p1 +Ps-NP2Z + (p1-Ps)? ) ]

P1Ps® + PsP4? + P22-P2P4P5 -4P1Ps
(3.41)

If the number found from computing Eqn. (3.39) is negative then the
expressions for e; and e, as given by Eqn. (3.40) and 3.41), respec-

tively, should be interchanged as seen by referring to Eqn. ( 3. 21), (3.22),
and (3.24).

The derivation of the transformation

b (B)
L 4z ()
=B = |us (D)
v (3)
vs () (3.42)

has now been completed, with the components y;, yp, s, Yy, and 5 given
by Eqn. (3.40), (3.41), (3.31), (3.32), and (3.33), respectively.

It was shown that an ellipse may be expressed as a linear func-
tion of a set of five parameters or as a nonlinear function of another set
of five parameters as given by Eqn. (3. 29) and ( 3.6), respectively.
The two sets of parameters are related by the transformation given by
Egn. (3.8). It is now appropriate to investigate methods whereby the
unknown parameter vector for an ellipse may be estimated after points
on the ellipse have been measured.
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3.3 Parameter Estimation Problem
3.3.1 The Error Formulation

In order to estimate the five parameters that represent the size
and position of the ellipse one may write Eqn. (3.29) or (3.6) as

F(xi» vis Lo) = 0 (3. 43)

where (x;,y;) is any point on the ellipse and

&
. 9
Co Ls
Ly
s (3.44)

is the parameter vector which characterizes the ellipse,

If. Eqn. (3.29) is used for describing the ellipse, then

P1
- P2
Lo = Ps
P4
Ps

If one measures any point on this ellipse and computes F using
some other parameter vector, {, the value for F will not be zero, but
rather it will be equal to an error, €, That is,

F(xj,y;3C) =€ (3.45)

Likewise, if one makes an error in the measurement of a point on this
ellipse, then the computed value for F using the true parameter vector,

{o, is again non-zero, representing an error,€ . That is,
v ~ —

~ A%
where (xj,y;) is now a noisy measurement point.

Now as the boundary of the landmark or the pattern is traced, a
sequence of coordinates xj, y; become available. Given Eqn. (3.45)
and the coordinates of the boundary (xi5y3)> i=1, 2, "°*, one can
estimate a vector C, of the true parameter vector Qo
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The estimation will be based on minimizing an appropriate func-
tion of the error in Eqn. (3.45). The simplest of these functions appears
to be the sum-squared of the error, If N points on the boundary are
available, the sum-s%ared error is given by

HET: D= ) [FGLT T - Flaeys s B

i=

N
) IFGuysU°

i=1

(3.47)

For convenience, the tilde on xj and y; will be eliminated from now on.
It will be understood that (xj, yj) represent noisy measurement points.

Let

-

o) (3.48)

- -

Min ¢ (5,5 ; §) = &7,

—

where X, ¥ are N-dimensional vectors consisting of the N points which
were measured on the ellipse or landmark boundary.

By defining an N x 1 error vector, e

F(xi vy 5 Z)

oy
H
il
M
<}
)
i

(s ¥y 5 T) (3.49)
the sum-squared error may be conveniently written as
Hxy;T)=cT8 (3. 50)
where T denotes transposition,
It should be noted that the criterion function, ¢, corresponding
to the sum-squared error is dependent upon whether F given in Eqn. (3. 49)
corresponds to Eqn. (3.6) or to Eqn. (3.29). The resulting criterion

functions are not identical. This point is discussed in greater detail in
Appendix Il
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3.3.2 Error Minimization by Linear
Regression Analysis

When the ellipse is given by Eqn. (3. 29) then it is a linear func-
tion of the parameter vector, P, and the minimization of the sum-squared
error reduces to a simple result, The error may be written as

—

e=F(%y;p) =Mp+1 (3.51)

where M is the N x 5 matrix

2
N *NYN YN *N YN
(3.52)

and T is an N x 1 vector containing all 1's. Egn. (3.52) indicates that
the elements of M are simply functions of the measured points on the

ellipse.

The sum-squared error, ¢, becomes

— - -—T—b
HX,y; p)=¢ e
=(Mp+ DT MP+T) (3.53)

which is a positive definite quadratic form in the coordinates of the trial
parameter vector, P. Therefore, one merely needs to compute all of

the partial derivatives of ¢ with respect to the components of P and equate
them to zero to find the unique minimum value of ¢. Expanding Eqgn.
(3.53) gives

¢ = (MP) (M P) +(ME)TT+TTM;+TTT
5T MTMB+ 28 MTTHN (3.54)
and therefore
%%e_v-¢=ZMTME+ZMTT . (3.55)
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and

29 =0=2M Mp,+2M" T

0P| 3.56

Plg-1. ( )
or MT MPe=MTT (3.57)

The matrix MM may be inverted, assuming M is of full rank, to give

—_ -1 -

b, = - [MTM] " mT T ( 3. 58)
This estimate is then the '""least squares estimate' of the true parameter
vector, f)’o , and shall be referred to as the one step minimization method,

It should be noted that the simple expression for Be as given in
Eqn. (3. 58) would not have resulted had the criterion function been
something other than quadratic in the parameter vector components,
since the differentiation would have yielded a nonlinear relation in the
parameter vector components,.

If the parameter vector, Cy, is to be estimated directly from
Eqn. (3.6) some other technique than Eqn. (3. 58) must be employed
since the parameters enter Eqn. (3. 6) in a nonlinear manner, making
the criterion function, ¢, no longer quadratic in the parameters., A
complete automatic computer algorithm to estimate parameter vectors
for this sort of problem has been developed by R. B. McGhee [ 17] and shall
be utilized here. This is an iterative minimization scheme rather than a
one step minimization scheme such as was associated with the linear
regression analysis. The essence of this computer algorithm is dis-
cussed below,

3. 3.3 Gauss-Newton Iteration

If the nonlinear response vector, F, has its Taylor series ex-
pansion truncated after the linear term

A —
B(S, 4+ AC) =F(c;) +2F AT (3. 59)
8_5 — ->
C = C;
or
A
F(S, + AC) =F(&) +z A< (3. 60)



where

(aF(XI’YI i S) ... 8F(x,y; ; 9)]
9 ¢, dcjy
Z:aF =
oc
c=7q dE(xN YN 5 €) 8 F(xN, yN 5 ©)
9 cy dcg
- s J -
c =¢c
(3.61)

A
then the criterion function, ¢, associated with this response function is
A

- - -, _ ATL
¢{x,y ;A c, ¢,)=F F (3.62)
A
where I is defined in Eqn. (3. 60) and
A > - -, T laad —
HAac)=(e+Z Ac) (e+Z Ac) (3.63)

which is a quadratic form in A, Expanding Eqn. (3. 63) gives

A
¢(Ac)=eTe+e ZAc+AcTZ e+AcTZTZ Ac (3.64)

If Eqn. (3.64) is differentiated with respect to AT and the result equated
to zero, the minimizing value of AZ becomes

A
T

8&* =0 = zz€+zzTZA'c’l
0ACc

AT = AT (3. 65)

or

- T -1 T
AT =-(22) z ©€ (3. 66)

T
assuming that Z Z is nonsingular. The matrix
T
S=2Z Z (3.67)
is referred to as the regression matrix due to the similarity of this
method to linear regression analysis., The normal equation for iteration,

Eqn. (3.65), is linear in AT only because function F was linearized and
a quadratic criterion function was chosen.
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Since

g - ] - e T -
PoT,) =22 =28 873 Z(E) =2 2738
3 (o4 3 C E - 3 -6 - -
= 1 = Cl
E:-= 61
(3. 68)
Eqn. (3.66) becomes
- 1 ~1 — - A —
Ac;=-3S V(&) = By (3.69)
The new value for the parameter vector, c, then is
Ez = g]_ + Aa (3. 70)

upon which a new iteration may then be initiated. This procedure is
referred to as the "Gauss-Newton!' iteration method [ 17] .

As mentioned previously, Eqn. (3.69) is based on the assump-
tion that linearizing function F, Eqn. (3,59), is valid. Since, in fact,
this may be completely invalid, it is quite possible that the sequence of
parameter vector estimates, given by Eqn. (3.70), will not converge to
T,. The necessary and sufficient conditions for the convergence of the
Gauss-Newton procedure may be derived; however, the test is generally
complicated enough that in practice one simply computes ¢ gi + 31) at
each step to see if an improvement results, It can be shown that the
Gauss-Newton iteration always converges when binary scale factor ad-
justment is used [ 17] . When this technique is used, &j 1 is found
from

Sity=c+27 B (3. 71)

where k is the first non-negative integer which reduces ¢. However,
experimental results show that the rate of convergence can be quite slow.
For this reason, the "modified'" Gauss-Newton procedure will not be used.
The Gauss-Newton iteration enjoys its greatest success as a terminal
iterative technique, where the current parameter vector is ''close!'' to its
minimizing value,

3. 3.4 Newton-Raphson Iteration

When the Gauss-Newton iteration fails to give a reduced value
for the criterion function, ¢, then direct gradient techniques may be
appropriate, This eliminates the necessity of inverting the matrix, S,
and also makes it possible to handle parameter range constraints in a
straightforward manner.
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The gradient technique to be employed is the method of steepest
descent, in which case the parameter change vector, Ac, is directly
proportional to the negative gradient of the criterion function, ¢.

AT, = -k THcy) (3.72)

where
k>0 (3.73)
Thus, A:i is in the direction of the greatest rate of decrease of ¢. The

next parameter vector estimate then becomes

-»> -

Ci4+1 =Ci+4c (3.74)
which may then be used to perform another iteration.

Before Eqgn. ( 3. 72) can be utilized, it is necessary to choose
some value for the scale factor, k., The '"Newton-Raphson' method may
be used to obtain a value for k. Essentially it is based on taking the
linear portion of the Taylor series expansion of the criterion function, ¢,
and extrapolating this to zero. More precisely, suppose that ¢ is a
sufficiently smooth function of ¢ such that it may be represented locally
by the Taylor series

WS+ ad) =43+ Velal+oad?) (3.75)

where 0(A é’z) represents all the terms in the series which are quadratic
or higher order in A&, Then for small AT, 0( A<¢?%) may be ignored, and

> -» — — T -»
d(c+ Ac) = d(c)+ Vo Ac (3.76)
or
&<+ AC) = ¢&3) -k l'v'q;lz (3.77)
0
using Eqn. (3.72)., Extrapolating ¢ to zero, for whichk =k , gives
— = — 2
0 = ¢cj) -k‘; |V¢( <) ' (3.78)
or
0 (&)
kl = = - 2
EED]
(3.79)
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The corresponding parameter change vector, A¢j, at each state of itera-
tion is then, from Eqgn. (3.72),

N 4?(51) Vol i)
|V¢(31) Iz

1

(3. 80)

It may well be the case that iteration based on Eqgn. (3. 80) will
give a value for &( < +A<T) which is larger than &(<). This simply means
that AT is so large that linear extrapolation of ¢ to zero is, in fact,
invalid. Eqn. (3. 75) guarantees that for some 0 < k < k? the
criterion function, ¢, will be reduced, however. Thus it is desired to
find some k = k~ such that

e
b4

Min § 3-ky P(Ci))= HCiTky Vo(Sy))
k> 0 (3.81)

The next parameter vector estimate is then

-

ci +1 =cj-kj Vé(c;) (3.82)
This iteration scheme is called the "optimum gradient method".

It is, of course, not feasible to search over all values of k on a
computer, but it is quite feasible to perform a binary search over the
range

Oiki—__-—‘1;‘z——=k0 (3.83)
|74 |
which may be considered a '"'suboptimum gradient method'. Assuming

that ¢ is continuous and Vd) # T, Eqn. (3. 75) guarantees that there exists
an n such that

o Si- Ly k) Vo) < <) (3.84)
2

and therefore a binary search procedure always produces a convergent
sequence of values for ¢, A simple algorithm may be constructed to
find the minimizing value for n as follows. First of all, compute A('f(i)

from Eqn. (3.80). Then, forn=0, 1, ***, evaluate
n oy 1 -0
¢i=¢(ci+?ﬁ ACi) (3.85)
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Once a value for n is reached, say n = m, such that

o7 > T <o T (3.86)
and
o < & (3.87)

then take for the new value of ¢

2™ (3.88)
If Eqn. (3.87) is not satisfied, continue increasing n until Eqn. (3.86)is
again satisfied and then check Eqn. (3.87) once again. Continue this
until both Eqn. (3.86) and (3.87) are satisfied. Egn. (3.88) is then

-
the new value for c.

A further refinement may be incorporated into this algorithm by
fitting a quadratic function to the points ¢§*71, ¢{n and ¢/ +1 | Letting
¢ = gy, ™ = ¢ and ¢im T $,, it is straightforward to show
that the minimum of this fitted quadratic function occurs at

sle

3 kg
1 9 -59; + 44y

kquad =
4 $-3¢; + 24 (3.89)
h T S
where i = ?1 i
2
- > [
If &(Tj-kquad Vo) < #(Ci-k; 7o) (3.90)

then the parameter change vector is

-
Acji

i}

- kqua.d V“P( E;i) (3.91)
Otherwise,

Adi=-k V&) (3.92)
3.3.5 Range Constraints

It is necessary to place constraints on the parameters since we
assume the landmark or ellipse to be in the field of view. These are
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range constraints, in which each component of the parameter vector is
independently restricted to lie within some specified interval on the
number scale. Thus, each component, cj, must satisfy

aj < cj <bj (3.93)

where a; and b; are the lower and upper limits of the allowed range,

-d
respectively., This then means that the parameter vector, ¢, which
minimizes the criterion function, ¢, must be in a hypercube in parameter
space,.

Considering the problem at hand, one notes that in order for Eqn.
(3.2) to represent an ellipse it is necessary that e; and e, (or c¢; and
c,, respectively) be positive. Likewise, the finite field of view of the
optical equipment places constraints on e; and e, as well as the trans-
lations A and B (or cy and ¢ , respectively). Since an ellipse is
symmetric about its two axes, the rotation angle, 0 = ¢;, may be con-
strained to lie in the first quadrant.

Since the gradient-descent method discussed earlier is valid only
on the interior of the 5-dimensional contstraint region, R, it is necessary
to use a different strategy when a constraint boundary is encountered
during a gradient-descent, The method to be used is called the gradient-
projection method. If a constraint boundary should be encountered, this
method projects the gradient onto the constraint surface and then travels
in the negative direction of the projected gradient until a minimum for
¢ is found. The actual minimum for ¢ may either be located on the
interior of R or on a constraint boundary of R. In the latter case the
projection of the gradient will have all of its components equal to zero
at the final iteration.

The mechanization of the gradient-projection method may be
performed in three steps,

1. Check each component of the current parameter vector
estimate, @, to see whether it is within the allowed range
or if it lies at the lower or upper end cf the range.

2. If any component lies on either extreme of its range, and
if the negative of the corresponding gradient component
points out of the constraint region, then set this component
of the gradient equal to zero. Leave all other components
of the gradient at their true value.

3. The resulting vector, ﬁ(bp » is the desired projected
gradient.
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In order to find the optimum step size, it is necessary to find the maxi-.

mum scale factor which can be applied to - V¢, without violating a
range constraint. To this end, suppose that 9 P is positive.

This

means that cj can be reduced in value without €J violating a range
constraint. Let k? be the largest scale factor that can be applied to the

negative jth gradient component without violating the jth range constraint,

Then ks satisfies )
9 ¢
p

. 10 = a:
¢ikj 3o 3

J

which gives
KW= 37
J
8¢p
j

Likewise, for the negative components of V¢p it follows that
€j-Pj

2¢p

BCj

0. =
kG

The maximum scale factor, ky, is found from

j J

(3.94)

(3.95)

(3.96)

(3.97)

where the kg are defined only for the non-zero components of V¢p.

The maximum step size for the parameter change vector now

becomes

ali= -k Vo

(3.98)

This value may then be used as the maximum step size for the binary

search procedure discussed earlier.
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3.-3.6 Global Optima

Both the Gauss-Newton method and the Newton-Raphson method
are suited for determining local minima since they make use only of
local information., If more than one minimum is contained within the
constraint region, R, then it is desirable to find the smallest of all of
these minima. Such a minimum is called a global minimum. Of course,
the only way to find the global minimum with certainty is to exhaustively
search the entire constrained parameter space. Since this is not feasible
or practical on'a computer, one must choose some method whereby a
given confidence level is attained that the minimizing parameter vector
obtained is associated with a value of ¢ which is smaller than some
specified per cent of the points in R. Such a method is that of uniform
random searching in which parameter vectors are chosen at random
(with a uniform distribution for each component) and their correspond-
ing criterion functions are evaluated. The parameter vector, &, being
associated with the smallest value for ¢ is then used to initiate a local
minimization [ 17] .

30



CHAPTER IV

RECOGNITION OF ELLIPTICAL PLANAR PATTERNS

4,1 Introduction

This chapter is concerned with the recognition of elliptical planar
patterns. By the term '"recognition' it is meant that the two minimization
techniques which are discussed in Chapter IIl are employed to estimate
the five parameters associated with an ellipse having arbitrary size and
shape, as well as arbitrary position (translation and rotation) in the
planar field of view,

Section 4, 2 discusses the statement of the problem and the general
approach which is to be pursued, while section 4. 3 discusses the vari-
ous parameters which are associated with the implementation of the two
minimization schemes.

The results which were obtained from the two minimization
schemes are discussed in section 4. 4, and a summary of the advantages
and disadvantages of the two methods is contained in section 4. 5.

4., 2 Statement of Problem

The parameter estimation schemes were first applied to the
recognition of elliptical patterns. Elliptical patterns were selected
first because they are a somewhat complex pattern and yet their boundary
may be represented analytically. Furthermore, most of the ground work
for the estimation of the parameters of an ellipse has been laid in
Chapter III.

As was discussed in Chapter III, an ellipse, located in a plane,
may be fully characterized by five parameters. Two parameters, e,
and e,, are necesasary to specify the size and shape of an ellipse, while
three parameters are necessary to specify its position and orientation
in the plane. Figure 7 shows a typical ellipse which has been translated
and rotated with respect to the reference x, y-coordinate system.,
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Fig., 7--Parameters of an ellipse in the x, y-reference
frame.

With respect to the w, z-coordinate system, this ellipse may be expressed
analytically by Eqn, (4. 1)

eyw? +epz? =1 (4.1)
where

e; = and e, = zl
w z (4.2)

The parameters ry and r, are respectively called the w-axis radius and
the z-axis radius of the ellipse., The parameters which are actually
estimated are e; and e,, which are related to ry, and r, by Eqn. (4. 2).
The x and y-translation parameters are denoted by A and B, respectively,
and the rotation parameter is denoted by 6. These parameters are all
shown in Figure 7.

The parameter vector, €, which characterizes an ellipse is given
by Eqn. ( 4. 3).

C1 €
C2 €2
< = Cs = A
Cy B
c 3] (4.3)

It is, then, the intent of this chapter to determine the feasibility
of recognizing an elliptical planar pattern by estimating its associated
parameter vector @, and to determine whether the one step minimization

method or the iterative minimization scheme does the better job of per-
forming this parameter estimation task.
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4. 3 Implementation of the Parameter
Estimation Schemes

To simulate an ellipse in the field of view points which lie on
the boundary of an ellipse areartificiallygenerated by the subroutine
denoted by DATA, The logic by which this subroutine selects the data
points is discussed in Appendix I. After the subroutine DATA is pro-
vided with parameter vector ©T,, it generates data points which lie on
the boundary of an ellipse which is characterized by €,. This parameter
vector was arbitrarily chosen to be

1.00
0.25
1.00
-2.00
0. 50 (4.4)

04
1}

This corresponds to an ellipse which has a w-radius and a z-radius equal
to 1,0 and 2. 0, respectively. In addition, the ellipse has been translated
one unit in the x-direction and two units in the negative y-direction, and
rotated 0. 5 radians.

Thus, in the absence of measurement noise, one would expect
the estimate for @ to be exactly &.

While the parameter vector ¢, was held fixed, two other parameters
were varied to determine their effect on the accuracy of the parameter
estimation schemes.

One of these variable parameters was the number of data points
which were used to represent the boundary of the ellipse. Ten data
points were chosen for a sparse distribution of points on the boundary,
while one hundred data points were chosen for a dense distribution of points
on the boundary. Intermediate values for the number of data points were
chosen as 20 and 50.

The other variable parameter was the amount of noise which was
added to the data points to simulate the effect of measurement noise or
other errors. The noise samples, which are generated on the digital
computer, have a gaussian distribution. The mean and standard deviation
of these noise samples may be independently specified., In all cases the
mean was chosen to be zero, while the standard deviation was either
0.0, 0.1, 0.2, 0.3, 0.4, or 0,5, The maximum value for the standard
deviation of the noise sample, 0.5, was one-half of the z-radius of the
noiseless ellipse., Noise samples having a standard deviation larger than 0.5
result in the data points having such a large scatter that they no longer even
remotely resemble the boundary of an ellipse., In fact, physical systems
which correspond to the higher values of standard deviation (0. 3-0. 5)
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would have limited practical utility, but it is of interest to investigate
the reliability of the parameter estimation schemes for high noise levels,
and to develop bounds on the performance of such systems.

The pattern which is to be recognized is required to lie within
some bounds since in a physical situation the optical system would have
a finite field of view., The field of view was arbitrarily chosen to be a
square measuring eight units on a side, The boundary of the ellipse
which is characterized by the parameter vector &, given by Eqn. (4. 4)
lies entirely within this field of view,

A remark should be made at this point, If the noise which is added
to the data points has a large standard deviation, it is possible that some
of the resulting noisy data points will fall outside of the field of view.
When this situation arises, those noisy data points which fall outside of
the field of view are still regarded as valid data points in the simulation,
Physically, in an actual landmark tracking or automatic docking situation,
noise may be classified into two general categories. The first category
consists of noise associated with measurement errors., These include
grid quantization errors, detector or sensor errors, and transmission
errors. In any of these cases the coordinates of a data point ( which is in
the optical field of view) will be in error, and if the true data point is near
the boundary of the field of view then it is possible that the noisy, or
measured, data point will have coordinates which lie outside of the field
of view. This situation is contrasted to the second-category into which
noise may be classified, which may be termed '"masking' noise for lack
of a better name. This kind of noise corresponds to a case in which the
field of view is partially covered with clouds or to a case in which the
optical system is very badly out of focus. The sensor will be unable to
detect the data points which are masked, or obscured, due to either of
these situations, and therefore these data points are in essence, discarded.
This masking noise has the effect, therefore, of shrinking the field of
view,

Thus, it can be seen that the noise which is being simulated cor-
responds to measurement noise rather than "masking' noise,

The numerical values utilized in simulation experiments for the
range constraints for the five ellipse parameters are as follows:

0.0625< e; < 16,0
0.0625<e, < 16.0
-4.0<A < 4,0
-4.0<B < 4.0
0<6 < 1.57 (4.5
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These range constraints permit the fitted ellipse to have either of its
radii range in size from 1/4 unit to 4 units (i.e., the maximum diameter
is constrained to be no larger than the dimensions of the field of view).
In addition, the center of the fitted ellipse is permitted to lie anywhere
within the field of view, while the rotation angle is constrained to lie in
the first quadrant due to the symmetry of an ellipse,

The estimation process has to be started with an arbitrary initial
parameter vector, E:"e. The initial guess for the parameter vector was
0.

L.

T, = | O,
-2

0

(e <IN, IEN RE VRN ;]

. (4.6)
which corresponds to an ellipse having a w-axis radius and a z-axis
radius equal to 1, 414 and 0. 877, respectively, The parameter vector Cg
was chosen such that its components were ''close' in value to the com-
ponents of 2o and yet not so close as to make the estimation problem
trivial.

After performing a local minimization using &g as the initial
estimate for E’o, four more local minimizations are executed with the
initial estimate in each case being found by the RANSER ( random search)
subroutine. { 17] Thus, a total of five trial local minimizations are
carried out, The number of random searches for each trial local minimi-
zation was set equal to 100,

4.4 Results

Both the one step minimization method and the iterative minimi-
zation scheme which are outlined in Chapter 1II were employed to esti-
mate the parameters of the given ellipse, The results which were obtained
by using these two schemes are shown in Tables 1 and 2, respectively.
It should be pointed out that the data points are exactly the same for both
minimization schemes, permitting a meaningful comparison to be made.
The results which are tabulated in Table 2 are also shown pictorially in
Figures 8, 9, 10, 11, 12, and 13. In these figures the ellipse having
a solid line boundary corresponds to the parameter vector &,. The "+"
symbols correspond to the noisy data points arising from the solid line
boundary. The ellipse which is fitted to these noisy data points, and
characterized by Ee, is represented by the dashed line boundary. The
x and y-radii correspond to the w-axis and z-axis radii, respectively.
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A comparison of Tables 1 and 2 shows that for noise levels below
o = 0.4 the two minimization schemes produced results which were quite
similar. Referring to these tables or to Figure 8 one notes that for
noiseless data points the parameter vector is estimated precisely, that
is, E:’e = 30. This is a criterion which any good recognition scheme
should fulfill, of course.

Figure 9 shows the results which were obtained for o =0, 1,
Special note should be made concerning the accuracy with which the
rotation component of the parameter vector was estimated. It is seen
that the largest error is less than 3 degrees, while for three of the four
cases this error is considerably less than one degree.

A brief comment concerning the expression for the error should
be made at this point. In most instances it is more convenient and
meaningful to express an error in percentage rather than absolute terms,
Such is the case here. Since an ellipse is symmetric about both its
vertical and horizontal axes, its angular position is unique only in the
first quadrant, i.e., 0 to 90 degrees. The percentage error may then
be defined as the ratio of the absolute error to 90 degrees. With the
percentage error so defined, one can see that for ¢ = 0.1 the maximum
error is approximately three percent for the rotation parameter, which
is quite good considering the fact that the reference rotation angle is not
constrained to be small,

The results for ¢ = 0.2 are shown in Figure 10. Here again one
notes that the error in estimating the rotation parameter is quite good.
In fact, ignoring the 10 data point case, the maximum error is still less
than three percent, In the 10 data point case the error is approximately
seven percent, which is still reasonable considering the scarcity of data
points and the noise level. Another observation which can be made from
both Figures 9 and 10 is that the estimates for the parameter vector become
better as more data points are used, a situation which intuitively seems
reasonable.

When the noise level reaches ¢ = 0.3, as shown in Figure 11,
the fitted ellipses begin to differ from the reference ellipses to a larger,
and perhaps unacceptable, extent, The scatter of the data points is such
that an accurate fit cannot be realized by either of the parameter esti-
mation schemes. However, it should be pointed out that the estimate for
the rotation parameter is still respectable, except for the 10 data point
case. In the other cases the maximum error in the rotation parameter
estimate is less than nine percent, and for the 100 data point case this
error is approximately three percent (for the iterative minimization
scheme).
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For higher noise levels (¢ = 0.4 and 0. 5) the one step minimiza-
tion method runs into serious difficulties. Table 1 shows two instances
in which the one step minimization method was unable to fit an ellipse
to the data points. In both of these instances the estimate &g was found
to have one of its first two components a negative number. This means
that the one step minimization method actually fit a hyperbola to the
given data points rather than an ellipse.

For relatively high levels of noise (¢ = 0.4 and 0.5) Table 2
shows that the iterative minimization scheme also exhibits an undesirable
characteristic, that is, it has a tendency to select values for the first
two components of & which are at the boundary of their respective range
constraints., When this is the case the resulting fitted ellipse is actually
a circle having a radius equal to four units, as shown in Figures 12 and
13. These figures indicate that the iterative minimization scheme has
attempted to cluster all of the data points along a small portion of the
boundary of the fitted ellipse (or circle), with approximately one half
of the data points on either side of the fitted ellipse's boundary.

4. 5 Summary

This chapter has investigated the merits of "recognizing’ a planar
elliptical pattern, whose boundary points are given, by estimating the
values for the five parameters which characterize an ellipse. The
parameter estimation schemes which were employed are the two which
were described in Chapter III, namely, the one step minimization method
and the iterative minimization scheme. The ellipse which was to be
recognized was permitted to have arbitrary size and shape, as well as
arbitrary position and orientation so long as it was located within the
specified field of view.

As was pointed out in Section 4. 4, the two minimization schemes
provided essentially the same results for the estimate of the parameter
vector associated with the reference ellipse when the noise level was
below ¢ = 0, 4, For the lower noise levels (o = 0.0, 0.1, and 0.2) these
estimates were quite good, and special note was made concerning the
accuracy with which the rotation parameter was estimated. Excluding the
10 data point case for o = 0.2, the rotation parameter was never more
than three percent in error, which is a remarkable result. Unfortunately,
no other schemes exist presently with which these results can be compared.

For o = 0. 3 the estimate for the rotation parameter was still
respectable, but the other parameters were not estimated accurately
enough to yield a fitted ellipse which approximated the reference ellipse
to an acceptable degree.
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Both minimization schemes displayed undesirable characteristics
for very high noise levels (o = 0.4 and 0, 5), The one step minimization
method had a tendency to fit a hyperbola to the data points rather than
an ellipse (characterized by a negative value for one of the first two
components of the parameter vector) while the iterative minimization
scheme had a tendency to fit a constrained ellipse to the data points
(rw =1, = 4.0).

The fact that both minimization schemes failed to accurately
estimate the parameters associated with the reference ellipse for high
noise levels does not distract from their usefulness. In practice one
would regard a system corresponding to ¢ = 0.3, 0.4 and 0. 5 as having
an unacceptable level of noise and hence would demand a better design
for the system. Upon viewing Figures 5, 6, and 7 one sees that it would
be very difficult, if not impossible, to develop a recognition scheme that
could accurately recognize an ellipse from the given scatter of data.
points (this includes a human being as a ''pattern recognizer'').

As a minor point, it should be mentioned that the undesirable
characteristics of the two minimization schemes (for high noise) which
were previously mentioned can be corrected to some extent. The itera-
tive minimization scheme can be improved if the range constraints on
the first two components of C, are further restricted after the data points
become known, One simple procedure is to construct a rectangle, having
sides parallel to the x, y-axes, that encloses all the data points and that
has at least one data point lying on each of its sides. One would expect
the fitted ellipse to have neither of its diameters larger than the diagonal
of this "bounding'' rectangle. Thus, the two radii are constrained to be
no larger than one half of this diagonal, and so the lower bounds on the
range constraints for the first two components of E"e are modified accord-

ingly.

For the one step minimization method, constraints could be speci-
fied so that the fitted pattern is forced to be an ellipse. However, the
simplicity of the one step minimization method involved the fact that it
was an unconstrained minimization scheme. Since the unconstrained
one step minimization method was unable to always fit an ellipse to the
data points (and for reasons given in Chapter V) the iterative minimiza-
tion scheme was considered the better scheme and was used for the
recognition of elliptical patterns as well as for patterns that are not
ellipses.

Another point which might be noted concerning the one step
minimization method is that this scheme tends to estimate the larger
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radius, ry, much less accurately than the smaller radius, ry, This
can be seen in Table 1, This is not a property of the iterative minimi-
zation scheme, however, giving more support for its use.
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TABLE 1: ELLIPSE PARAMETER ESTIMATES OBTAINED BY
ONE STEP MINIMIZATION METHOD
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X-AX1S
10 DATA POINTS
STANDARD DEVIATION = 0.0

REFERENCE ELLIPSE LEAST-SQUARES ELLIPSE
X-RADIUS = 2.000 X-RADIUS = 2.000

Y-RADIUS = 1.000 Y-RADIUS = 1.000
X-TRANSLATION = 1.000 X-TRANSLATION = 1.000
Y-TRANSLATIOGN = -2.000 Y-TRANSLATION = -2.000
ROTATION IN DEGREES = 28.6U8 ROTATION IN DEGREES = 28.6U8

Fig. 8--Ellipses fitted to data points, o = 0.0 .,
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20 DATA POINTS
STANDARD DEVIATION = 0.0

REFERENCE ELLIPSE LEAST-SQUARES ELLIPSE
X-RADIUS = 2.000 X-AADIUS = 2.000
Y-RADIUS = 1.000 Y-RADIUS = 1.000
X-TRRNSLATION = 1.000 X-TRANSLATION = 1.000
Y-TRANSLATIEN = -2.000 Y-TRANSLATION = -2.000
ROTATION IN DEGREES = 28.648 ROTATIGN IN DEGREES = 26.6U8

Fig. 8--Continued .
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50 DATA POINTS
STANDARD DEVIATION = 0.0

REFERENCE ELLIPSE LEAST-SQUARES ELLIPSE
X-RADIUS = 2.000 %x-RADIUS = 2.000

Y-RADIUS = 1.000 Y-RADIUS = 1.000
X-TRANSLATION = 1.000 X-TRANSLATION = 1.000
Y-TRANSLATION = -2.000 Y-TRANSLATION = -2.000
ROTATION IN DEGREES = 28.6U8 ROTATION IN DEGREES = 28.648

Fig. 8--Continued .
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100 DATA POINTS
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X-RADIUS 2.000

Y-RADIUS = 1.000
X-TRANSLATION = 1.000
Y-TRANSLATION = -2.000
RBTATION IN DEGREES = 28.648

0.

0

LEAST-SQUARES ELLIPSE

X-RABIUS 2.000

T-8ADIUS = 1.000
X-TRANSLATION = 1.000
Y-TRANSLATION = -2.000
ROTATIGN IN DEGREES = 28.6U8

Fig. 8--Concluded .
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X-RADIUS = 2.000 X-RADIUS = 2.071

Y-RADIUS = 1.000 Y-RADIUS = 1.0uy
X-TRANSLATION = 1.000 X-TRANSLATION = 1.128
Y-TRANSLATION = -2.000 Y-TRANSLATION = -2.008
ROTATION IN DEGREES = 28.6U8 ROTATION IN DEGREES = 28.861

Fig. 9-~Ellipses fitted to data points, ¢ = 0.1 .
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20 DATA POBINTS
STANDARD DEVIARTION = 0.1

REFERENCE ELLIPSE

X-RADIUS 2.000

Y-RADIUS = 1.000
X-TRANSLATION = 1.000
Y-TRANSLATIBN = -2.000
ROTATION IN DEGREES = 28.6U8

LERST-SQUARES ELLIPSE

X-RADIUS 1.981

Y-BADIUS = 1.012
X-TRANSLATION = 0.985
Y-TRANSLATION = -2.030
RGTATION IN DEGREES = 28.705

Fig. 9--Continued .
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50 DATA POINTS
STANDARD BEVIATION = 0.1

REFERENCE ELLIPSE LEAST-SQURRES ELLIPSE
X-RADIUS = 2.000 X-RADIUS = 2.039

Y-RADIUS = 1.000 Y-RADIUS = 1.052
X-TRANSLATION = 1.000 X-TRANSLATION = 1.052
Y-TRANSLATION = -2.000 Y-TRBANSLATION = -1.994
RATATION IN DEGREES = 28.648 ROTATION IN DEGREES = 31.uU37

Fig. 9--Continued .
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Y-RADIUS = 1.025
X-TRANSLRTIGN = 0.956
Y-TRANSLATION = -1.986
RATRATIOGN IN DEGREES = 28.981

Fig. 9--Concluded .
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10 DATA POINTS
STANDARD DEVIATION = 0.2

REFERENCE ELLIPSE LEAST-SQUARES ELLIPSE
X-RADIUS = 2.000 X-RADIUS = 1.953

Y-RADIUS = 1.000 Y-RADIUS = 1.007
X-TRANSLATION = 1.000 X-TRANSLATION = 1.045
Y-TRANSLATION = -2.000 Y-TRANSLATION = -1.913
ROBTATIAN IN DEGREES = 28.648 RATATION IN DEGREES = 3u.826

Fig. 10--Ellipses fitted to data points, o = 0.2 .
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RGTATION IN DEGREES = 28.648

X-RADIUS
Y-RADIUS

2.062
1.236
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Fig. 10--Continued .
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50 DATA POINTS
STANDARD DEVIATION = 0.2

REFERENCE ELLIPSE LEAST-SQUARES ELLIPSE
X-RADIUS = 2.000 X-RADIUS = 1.889

Y-RADIUS = 1.000 Y-RADIUS = 1.077
X-TRANSLATION = 1.000 X-TRANSLATIAGN = 1.024
Y-TRANSLATION = -2.000 Y-TRANSLATION = -1.987
RATATION IN DEGREES = 28.6u8 ROTATIAN IN DEGREES = 28.201

Fig. 10--Continued .
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100 DATA PBINTS
STANOARD OEVIATIGN = 0.2

REFERENCE ELLIPSE LEAST-SQUARES ELLIPSE
X-RADIUS = 2.000 X-RADIUS = 1.955

Y-RADIUS = 1.000 Y-RADIUS = 1.075
X-TRANSLATIAGN = 1.000 X-TRANSLATION = 0.979
Y-TRANSLATION = -2.000 Y-TRANSLATION = -2.018
RATATIOGN IN DEGREES = 28.6u8 ROTATIAGN IN DEGREES = 31.257

Fig. 10--Concluded .
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Fig. ll--Ellipses fitted to data points, o =
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20 DATA POINTS
STANOARD DEVIATION = 0.3

REFERENCE ELLIPSE LEAST-SQUARES ELLIPSE
X-RADIUS = 2.000 X-RADIUS = 1.765

Y-AADIUS = 1.000 Y-RADIUS = 1.266
X-TRANSLATION = 1.000 X-TRANSLATION = 1.132
Y-TRANSLATION = -2.000 TY-TRANSLATION = -1.817
RBTATION IN DOEGREES = 28.6U8 RGTATIGN IN DEGREES = 35.374

Fig. 11--Continued .
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X-TRANSLATION = 1.000 X-TRANSLATIGN = 0.994
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ROTATION IN DEGREES = 28.648 ROTATION IN DEGREES = 36.561

Fig. 1l1--Continued .
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Fig. 12--Ellipses fitted to data points, o = 0.4 .
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Fig. 12--Continued .
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Fig. 13--Ellipses fitted to data points, o = 0.5 .
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CHAPTER V

THE RECOGNITION OF RECTANGULAR PLANAR PATTERNS

5.1 Introduction

The objective of this chapter is to investigate the feasibility of
employing either or both of the estimation schemes which are discussed
in Chapter III to recognize rectangular planar patterns. Again, by the
term '"'recognition' is meant the estimation of the five parameters which
characterize a rectangle having arbitrary size and shape, as well as
arbitrary position (translation and rotation) in a planar field of view.

In Section 5. 2 the statement’ of the problem is formulated and the
recognition strategy which will be investigated is discussed. The results
which are obtained from the two minimization schemes for rectangles
having known parameter vectors (no noise) are then analyzed in Section
5. 3.

The iterative minimization scheme is employed in Section 5.4 to
estimate the parameters associated with rectangles whose boundary
points are corrupted with noise, and the results using this scheme are
discussed. Finally, Section 5.5 contains a brief summary of the results
and conclusions which have been reached in this chapter.

5, 2 Statement of Problem

In order to further test the recognition techniques developed for
elliptical objects, a second class of patterns was considered. Rectangu-
lar patterns were chosen for this purpose because they are simple geo-
metric patterns and yet do not possess a simple analytic representation.
Furthermore, a rectangle has several properties in common with an
ellipse. Both of these patterns are convex, and both are symmetrical
about two orthogonal axes. Thus, a rectangle may be characterized by
a set of five parameters in a manner quite similar to an ellipse., Figure
14 shows a rectangle which has been translated and rotated with respect
to the x-y coordinate system., This rectangle is characterized by its
w-axis radius R, and z-axis radius Ry, and by the x- and y-translation of
its center (A' and B', respectively), as well as by its rotation 0'.
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Fig. 14--Parameters of a rectangle in the x, y-reference frame.

Therefore, the parameter vector characterizing a rectangle may be
expressed as

;jw
2= |ar
B|
o (5-1)

The strategy which was used to recognize rectangular patterns
was to present a number of different size and shape rectangles to both
the one step minimization method and the iterative minimization scheme,
and to determine what relationship, if any, existed between the parameter
vectors of the fitted ellipses and the parameter vectors of the correspond-
ing rectangles, This strategy is motivated by the fact that the noiseless
data points which lie on the boundary of a rectangle may be considered as
being noisy data points which originally belonged on the boundary of some
ellipse. If a relationship can be found between the parameter vectors of
the fitted ellipses and the parameter vectors of the corresponding rec-
tangles, then it will be possible to compute the parameter vector of an
unknown rectangle after the parameter vector of its associated fitted
ellipse is determined.

5.3 Parameter Estimation for Noise-
Free Rectangular Patterns

The results of using the one step minimization method to recognize

a rectangle are shown in Tables 3, 4, 5, and 6. Each table corresponds
to a different number of data points on the boundary of the rectangle,
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the number of data points being 8, 20, 48, or 100, respectively. These
data points were generated by the DATA subroutine which is described
in Appendix I.

A total of twenty rectangles were to be recognized. Ten of the
rectangles have a w-axis radius equal to one unit of length, with the
z-axis radius varying from 0.1 to 1. 0 units of length in increments of 0, 1.
The other ten rectangles are exactly twice the dimensions of the first
ten, The translation and rotation parameters of the rectangles were
chosen to be the same as those which were used for the ellipse which
was discussed in Chapter IV, Thus

cy = x-translation = A' =1,0
c} = y-translation = B' =~ 2.0
ckt = rotation in radians = 6' = 0,5 (5.2)

In the tables the radii of the rectangles are denoted by R while
the radii of the fitted ellipses are denoted by r. The radii of the fitted
ellipses are, of course, related to the first two components of their
characterizing parameter vector, &, by Eqn. (5. 3).

rw= 1_
Ci
r. = 1
z = —_
Cz (5.3)

Inspection of Tables 3, 4, 5, and 6 indicates that the one step
minimization method is not very effective in recognizing the rectangles.
For the most part the translation and rotation parameters of the fitted
ellipses are quite close in value to the corresponding parameters of the
given rectangles., However, there is no recognizable correspondence
between the w-axis and z-axis radii of the fitted ellipses and the respec-
tive radii of the rectangles.

A remark should be made at this point regarding the results
which one would intuitively expect to obtain. First of all, since an ellipse
and rectangle have similar geometric properties ( convexity and symmetry
abouc two orthogonal axes) one would expect that the known rectangles
and the corresponding fitted ellipses would have identical coordinates for
their centers, as well as identical rotation angles, On the other hand,
it is difficult to predict the exact relation between each radius of a known
rectangle and the corresponding radius of the fitted ellipse. However,
again due to symmetry, one would expect that the ratio of the radii of a
fitted ellipse would be nearly equal to the ratio of the radii of the cor-
responding known rectangle, being more or less independent of the rec-
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tangle's size. The one step minimization method did not possess this
property, however. If a recognition scheme does have this property,
then the constant of proportionality relating the size of the rectangle to
the size of the corresponding fitted ellipse may be determined experi-
mentally, :

Another weakness of the one step minimization method is that it
is unable to fit any ellipse to some of the given rectangles. This might
be expected, however, since the one step minimization was unable to
fit an ellipse to an ellipse under high noise conditions, as was pointed
out in Chapter IV, Thus, the one step minimization method does not
appear to be a good method for estimating the parameters of a rectangle.

The iterative minimization scheme was next employed to esti-
mate the parameters of these same rectangles, The same values were
used for the range constraints as were used in the recognition of ellipses
in Chapter IV, Tables 7, 8, 9, and 10 show the results of using this
scheme, The initial estimate used for the parameter vector of the fitted
ellipse for the ten larger rectangles was

.25
.00

0.2
1.0
o 0.7
-2.5
0.8

0
1

. (5.4)

Inspection of Tables 7, 8, 9, and 10 indicates that the iterative
minimization scheme is quite effective in estimating the parameters of
a rectangle. It is seen that the ratio r,/ry corresponding to the radii
of the fitted ellipse is equal ( to within three decimal places) to the radii
R,/Ry of the rectangle which is to be recognized. Thus the ratio of
the radii of the fitted ellipses gives a direct indication of the shape of
the rectangles to which they are fitted.

Tables 7, 8, 9, and 10 also indicate that the size of the rec-
tangles may be determined to a reasonable degree of accuracy, When
eight data points on the boundary of the rectangle are given, Table 7
shows that Ry = 0. 775 r,, meaning that the rectangles' radii are 0. 775
times the length of the fitted ellipses' radii, Likewise, Tables 8, 9,
and 10 show that the scale factor, Ry/ry is equal to 0.830, 0.842, and
0. 845 for 20, 48, and 100 data points on the boundary of the rectangle,
respectively.

One can see that the scale factor does not change appreciably
when more than 48 data points are given, If one assumes that the scale
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factor associated with 100 data points is essentially the same as the

scale factor associated with an infinite number of data points ( which seems
reasonable in light of the above results) then it is possible to compare

‘the scale factor associated with a finite number of data points with the
scale factor associated with a continuous representation of the rectangle,.
For eight data points this ratio is 0. 775/0, 845 = 0, 917, which means

that the estimated size of the rectangle is only 91. 7% of the size of the
actual rectangle, although it has exactly the same shape as the actual
rectangle. For 20 data points this ratio increases to 0.830/0, 845 =

0.983 and for 48 data points the ratio is 0.842/0.845 = 0,997. Thus, if
the rectangle is represented by twenty or more data points on its boundary,
then one need merely multiply the radii of the fitted ellipse by the factor

0. 845 to obtain the radii of the corresponding rectangle, having assurance
that this rectangle will be at least within 2% of the size of the actual
rectangle,

Tables 7, 8, 9, and 10 show another very desirable property of
the iterative minimization scheme, namely, the translation and rotation
parameters of the fitted ellipses have exactly the same values (to within
three decimal places) as the corresponding parameters of the given
rectangles. Therefore, only the first two components of the fitted
ellipse's parameter vector need to be transformed in order to obtain the
parameter vector of the rectangle, and this transformation is a simple
scale change.

Thus, the desired relationship between the parameter vector of
the fitted ellipse and the parameter vector of the associated rectangle
has now been determined. If the final estimate for the parameter vector
of the fitted ellipse is given by

€,
€2
Ce = |A
B
0 (5.5)

then the estimate for the parameter vector of the rectangle which is to
be recognized is

Rw k/'\/—el
R, k/'\/_ez
cL= |a = A
B! B
o' 0 (5.6)
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where k, the scale factor, is a function of the number of data points.
If the number of data points is 20 or greater, k may be taken to be 0, 845,

5.4 Parameter Estimation for Noisy
Rectangular Patterns

Since the iterative minimization scheme was able to effectively recognize
rectangles, the question naturally arises as to how well it can recognize
rectangles which are represented by noisy data points., In order to deter-
mine this a total of twenty-four different cases were considered, as was
done with the ellipse in Chapter IV,

The noiseless rectangle, whose parameters are to be estimated,
is characterized by the following parameter vector.

R 2,00
R, 1.00
¢y = |A! = 1.00
B! -2.00
o 0. 50 (5.7)

The last three components have the same value as they did for the

ellipse considered in Chapter IV. The noise levels are also the same as
they were previously, namely, ¢ = 0.0, 0,1, 0,2, 0.3, 0.4, and 0.5, Also,
all of the parameters associated with the iterative minimization scheme
were given the same values as they had in Chapter IV, with the exception

of the initial parameter vector estimate T,. It is

€, 0. 25
e, 1.00
Ce = A = 0,70
B -2, 50
6 0. 80 (5.8)

Figures 15, 16, 17, 18, 19, and 20 show the results of estimating
the parameter vector of a rectangle using the iterative minimization
scheme. Before discussing these results it should be pointed out that
the radii of the rectangle were computed by using the scale factor associ-
ated with the appropriate number of data points. Thus, for example, for
the six cases in which the rectangle was represented by 20 data points
the scale factor which was used was 0, 830, and not 0. 845. By doing this,
any error in the estimated parameter vector is due to the noisy data points,

An examination of Figure 2 reveals that the x-~-radii and y-radii
(w-axis radii and x-axis radii, respectively) of the fitted rectangles
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differ in the third decimal place from the corresponding radii of the
reference rectangles. This is due to rounding off the scale factors to
the third decimal place. This error is entirely negligible compared to
the error resulting from the noisy data points.

In some of the figures there are not as many noisy data points
as the number which is indicated. This is due to the fact that some of
the noisy data points fell outside of the field of view. As before, these
data points are considered to be valid points for the iterative minimiza-
tion scheme to use, being analogous to measurement noise,

An inspection of Figures 15, 16, 17, 18, 19, and 20 shows that
fitting an ellipse to a set of data points belonging on the boundary of a
rectangle is an effective method by which to estimate the parameters
of the rectangle when the noise level is within reasonable limits
(¢ =0,0, 0,1, and 0. 2).

Referring to Figure 16 (0 = 0. 1) one sees that the rectangles
which correspond to the fitted ellipses (the dashed line rectangles)
resemble the reference rectangles very closely except in the eight data
point case. It would seem that eight data points, when corrupted by
noise, simply are too sparse in number for the iterative minimization
scheme to yield a good-estimate for the reference rectangle's parameter
vector, Howewver, it should be noted that the error in estimating the
rotation angle for the eight data point case is quite acceptable, being
approximately two percent. In the other three cases this error is approxi-
mately one percent or less,.

For ¢ = 0, 2 it can be seen in Figure 17 that the parameter vector
estimates are beginning to deteriorate, but for the 20, 48 and 100 data
point cases these estimates are still acceptable by most standards. In
particular, it is seen that for these three cases the error in the rotation
angle estimate is no greater than approximately four percent, which is
rather small considering the scatter of the data points,

When the noise level reaches ¢ = 0,3, the overall effectiveness
of the iterative minimization scheme becomes questionable. The fitted
rectangles have a tendency to be larger than the reference rectangles.
However, one good point which can be made is that the estimate for the
rotation angle in all four cases does not exceed four percent, which
means that this estimate has not been affected to any extent by the
increase in noise level from o = 0,2 to o = 0. 3.
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Figures 19 and 20 indicate that for high noise levels (o = 0,4 and
0. 5) the recognition capability of the iterative minimization scheme has
completely deteriorated. Some improvement could be achieved for the
cases in which the fitted rectangles have radii equal to their constraint
value. In these cases the fitted rectangle is a square which concentrates
the data points in one of its corners, with approximately one half of the
data points on the inside of the square and one half on the outside. This
situation is very similar to that which occurred in the recognition of
ellipses under high noise conditions, and it can be remedied in exactly
the same manner as described in Chapter IV,

5.5 Summary

This chapter investigated the feasibility of utilizing either the
one step minimization method or the iterative minimization scheme to
estimate the parameters of a rectangle when noisefree data points lying
on the rectangle's boundary are given. If the parameters are estimated
with sufficient precision then the rectangle has been '"'recognized'" correctly.

It was found that the one step minimization method was completely
inadequate in its capability to estimate the parameters of given rectangles,.
While it did do a reasonable job in estimating the translation and rotation
parameters, the two major shortcomings of this method were

(1) the ellipse which was fitted to the data points did not
have the same shape as the given rectangle, i.e., the
ratio of the radii of the fitted ellipse was not identical
to the corresponding ratio of the radii of the given
rectangle,

and

(2) the size of the fitted ellipse did not double when the size of

the given rectangle doubled.

The iterative minimization scheme, on the other hand, did not
have these shortcomings. Not only did it estimate the translation and
rotation parameters very precisely, but the ellipse which it fitted to the
data points had radii whose ratio was identical to that of the given
rectangle, and this ratio was .independent of the size of the given rec-
tangle. It was therefore possible to experimentally determine a scale
factor relating the size of the fitted ellipse's radii to the radii of the
given rectangle.

Since the iterative minimization scheme had the capability to
precisely estimate the parameters of a rectangle whose boundary points
were noise free, the next step was to determine the degradation in the
parameter vector estimates in situations for which the data points were
noisy. Reference to Figures 15, 16, and 17 indicates that for moderate
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levels of noise (¢ = 0,0, 0,1, and 0, 2) the iterative minimization scheme
did a very satisfactory job of recognizing the rectangles. Special notice
should be taken concerning the accuracy with which the rotation angle

was estimated, Excluding the eight data point case, this error was

never greater than four percent for these moderate noise levels,

The recognition scheme produced results of questionable value
for noise level ¢ = 0.3, Although the rotation angle was still estimated
with good precision ( maximum of four percent error), the size of the
fitted rectangle tended to be larger than the size of the reference rec-
tangle. It can be said that ¢ = 0. 3 represents the maximum noise level
for which the iterative minimization scheme produces useful results for
the particular set of rectangles investigated.

For larger noise levels (¢ = 0,4 and 0. 5) the iterative minimiza-
tion scheme was not able to do a satisfactory job of recognizing the rec-
tangles at all, This is not at all surprising, since even a human being
would have difficulty trying to fit a rectangle to the data as shown on
Figures 19 and 20.
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TABLE 3: PARAMETERS OF ELLIPSES FITTED TO RECTANGLES
BY THE ONE STEP MINIMIZATION METHOD
(8 DATA POINTS)

A B 6

R, R, Rz/Rw Ty r, r, /Ty

1,0 0.1 0,100 1,331 0.077 . 058 1,152 -1.917 . 496
1.0 0.2 0,200 1,768 0,202 .114 . 962 -2,023 . 499
1.0 0.3 0,300 1. 755 0,298 . 170 . 996 ~-2.007 . 499
1.0 0.4 0.400 1,773 0. 396 . 223 1.003 -2.008 . 499
1.0 0.5 0.500 1,799 0. 491 . 273 1. 006 -2.016 . 498
1.0 0.6 0.600 1.834 0. 585 . 319 1.007 -2.018 . 497
1.0 0.7 0,700 1.886 0.675 . 358 1,010 -2.025 . 496
1.0 0.8 0.800 1.957 0. 761 . 389 1,014 -2.034 . 495
1.0 0.9 0.900 2.063 0.842 , 408 1.017 -2.045 . 493
1.0 1.0 1.000 2.234 0.915 . 410 1,020 -2.060 . 491
2.0 0.2 0.100 3.517 0,201 . 057 . 995 -2.005 . 500
2.0 0.4 0,200 3.540 0. 395 L112 1,003 -2.007 . 500
2.0 0.6 0.300 3.670 0. 584 . 160 1,008 ~-2,017 . 499
2,0 0.8 0.400 3.918 0.761 . 194 1,014 -2.034 . 499
2.0 1.0 0.500 4,481 0.915 . 204 1,021 -2.060 . 498
2.0 1.2 0,600 6.801 1.030 . 151 1.010 -2.109 . 497
2,0 1.4 0,700 *

2.0 1.6 0,800 *

2.0 1.8 0,900 *

2,0 2.0 1.000 %

*Not able to fit ellipse data,
Note: R corresponds to reference rectangles' radii
r corresponds to fitted ellipses' radii
All reference rectangles have A = 1.0, B = -2,0, and

06=0,5
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TABLE 4;: PARAMETERS OF ELLIPSES FITTED TO RECTANGLES

BY THE ONE STEP MINIMIZATION METHOD

o)

€
by
N

RZ/RW

0.100
0. 200
0. 300
0. 400
0. 500
0. 600
0. 700
0. 800
0. 900
1. 000

OO 00 ~1 ONUl ih W =

R o = B SRy o
OO OO O0OO0 0000
— OO0 QOO0 OO0 OO0

0. 100
0. 200
0. 300
0. 400
0. 500
0. 600
0. 700
0. 800
0. 900
1.000

MMM DNDNDNMDND
O O O QOO OO OO O
N = = -0 0O OO
O X O RANOCOOAIN

T

-

[ S T R )
.

*-,\‘rthNNNNN

(20 DATA POINTS)

w

w o
N O
o O

. 330
. 335
. 340

347

. 354
. 364
. 377
. 394

. 643
. 671
. 695
. 729
. 789
.902
. 165

429

0
0
0
0
0
0
0
0
0
1

0
0
0
0

Ty

. 056
. 209
. 314
. 418
. 520
. 622
. 722
. 819
.914
. 005

. 209
. 418
. 622
. 819
. 004
.168
. 289
. 309

*Not able to fit ellipse to data.
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r,/ry

0. 080
0.158
0. 236
0. 313
0. 388
0. 462
0. 533
0. 600
0, 664
0.721

0.079
0. 156
0. 231
0. 300
0. 360
0. 402
0. 407
0. 296

1.,
0.
1,
.003
. 004
. 005
. 008
.011
.014
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—t e e e e

— bl b= e e et et
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238
988
003

.017
,002
., 005
.011
.018
.029
. 046
.062

-1

-2,
-2,
-2,
-2,
-2,
-2,
-2,
-2.
-2,

-1

-2,
-2,
-2.
-2,
-2.
-2.

-2

. 865
007
002
004
008
012
016
022
029
038

.992
005
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022
038
063
104
. 187

. 498
. 500
. 500
. 499
. 498
497
. 496
. 494
. 491
. 487
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TABLE 5: PARAMETERS OF ELLIPSES FITTED TO RECTANGLES

BY THE ONE STEP MINIMIZATION METHOD

(48 DATA POQINTS)

R, R, R,/Ry, Tw r,
1.0 0.1 0.100 1,307 0.111
1,0 0. 2 0. 200 1. 246 0. 207
1.0 0.3 0. 300 1.277 0, 318
1.0 0.4 0. 400 1,282 0. 424
1.0 0.5 0. 500 1. 284 0. 529
1.0 0.6 0. 600 1, 288 0.632
1.0 0.7 0. 700 1. 292 0. 735
1.0 0.8 0.800 1. 299 0.835
1.0 0.9 0. 900 1. 307 0.933
1.0 1.0 1,000 1.317 1.028
2.0 0.2 0.100 2. 537 0.211
2.0 0.4 0. 200 2. 564 0., 424
2.0 0.6 0. 300 2.576 0. 633
2.0 0.8 0. 400 2. 598 0.835
2.0 1.0 0. 500 2. 635 1.028
2.0 1.2 0. 600 2.702 1. 203
2.0 1.4 0. 700 2. 845 1.343
2.0 1,6 0. 800 3.323 1.401
2.0 1.8 0.900 *

2.0 2.0 1. 000 *

“Not able to fit ellipse to data.

77

0
0

(el elNolNeNolNeNo Nl

rz/ry,

. 085
. 166

. 083
. 165
. 246
. 321
. 390
. 445
. 472
. 422

e et e e e b e e O

—_ e e = e = O

. 640
. 001
. 001

001

.003
. 004
. 006
. 009

012

.015

. 977
. 002
. 004
. 009
.015
.025
. 040
. 065

-2.
-2,
-2,
-2.
-2.
-2.
-2.
-2.
-2,

-2,

-2.
-2.
-2.
-2,
-2.
-2.
-2.
-2.

206
001
002
005
007
010
013
018
024
031

014
004
010
018
032
052
086
152

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

OO O OO0 OO

515
503
501
500
499
498
497
495
491
486

. 500
. 500
. 500
. 499
. 498
. 497
. 495
. 492



TABLE 6:

Ry R, R,/Rg
1.0 0.1 0. 100
1.0 0.2 0,200
1.0 0.3 0.300
1.0 0.4 0,400
1.0 0.5 0.500
1.0 0.6 0.600
1.0 0.7 0,700
1.0 0.8 0,800
1.0 0.9 0.900
1.0 1.0 1. 000
2.0 0.2 0.100
2.0 0.4 0,200
2.0 0.6 0,300
2.0 0.8 0. 400
2.0 1.0 0. 500
2.0 1.2 0,600
2.0 1.4 0,700
2.0 1.6 0.800
2.0 1.8  0.900
2.0 2.0 1. 000

= b e e e e e e e O

%

F LW

(100 DATA POINTS)

. 491
. 256
. 265
. 269
. 273
. 277
. 281
. 287
. 295

305

552
543
556

. 577
.611
. 672
. 801
. 215

Ty

. 044
. 213
. 320
. 425
. 530
. 635
. 737
. 838
. 937
.032

— OO 0O COO0OO0O0O O

.214
. 425
. 634
. 838
.032
. 209
. 353
1,417

o= O O OO

*Not able to fit ellipse to data.
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rz/rw

[ elolNeNeoNoleNeNoNe

[>NeNelNoNelNolNo Nl

. 090
. 170
. 253
. 335
. 416
. 497
. 575
. 651
. 724
. 791

. 084
. 167
. 248
. 325
. 395
. 452
. 483
. 441

0.

[ N = ™

T

A

722

.015
. 995
. 000
.002
. 004
. 006
. 008

011

.015

. 995
.003
.005
.008
.015
.024
. 039
.064

-2,141
-1,992
-2.004
-2.004
-2.006
-2.009
~2.013
-2.017
-2.023
-2,030

-2.005
-2.004
-2.009
-2.018
-2.030
-2.050
~2.083
-2,146

[eeNeoBeBeoNoNoNoNoNeo)

[N oo NeNoNeNoNe)

PARAMETERS OF ELLIPSES FITTED TO RECTANGLES
BY THE ONE STEP MINIMIZATION METHOD

. 506
. 503
. 501
. 500
. 499
. 498
. 496

495
491

. 486

. 497
. 499
. 499
. 499
. 498
. 497
. 495
. 492

o



TABLE 7:

NNE\)NNNNNNN
[oNeNeNeoNolNelRelolNolNol

=
N

R,/Ry

. 100
. 200
. 300
. 400
. 500
. 600
. 700
. 800
. 900
. 000

N M= ==~ 00 O0OC
s e e e e s e .

O 00 OO OOV
— O OO OO0 0O OO0

(8 DATA POINTS)

Tw

. 582
582
582
582
. 582
582
582
582
582
. 582

[\JNI\JNNNN.I\JNN

r - ellipse radii

R - rectangle

Scale Factor

radii

Ty

0. 258
0. 516
0.775
1,033
1.291
1. 549
1.807
2.066
2.324
2. 582

data points
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Ty Ty

—H O OO QOO0 0o

. 100
. 200
. 300
. 400
. 500
. 600
. 700
. 800
. 900
. 000

A

. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000
. 000

famd bt e bt fed femd e peed e et

-2,
-2,
-2,
-2,
-2,
-2,
-2,
-2,
-2,
-2,

000
000
000
000
000
000
000
000
000
000

PARAMETERS OF ELLIPSES FITTED TO RECTANGLES
BY THE ITERATIVE MINIMIZATION METHOD

OO OO OO0COOO0OOo

. 500
. 500
. 500
. 500
. 500
. 500
. 500
. 500
. 500
. 454



TABLE 8: PARAMETERS OF ELLIPSES FITTED TO RECTANGLES
BY THE ITERATIVE MINIMIZATION METHOD
(20 DATA POINTS)

Ry R, Ryz/Ry Tw Ty rz/Ty A B §)
2.0 0.2 0.100 2. 409 0. 241 0.100 1.000 -2. OOO 0. 500
2.0 0.4 0. 200 2. 409 0. 482 0. 200 1.000 -2.000 0. 500
2,0 0.6 0. 300 2. 409 0,723 0. 300 1.000 -2.000 0. 500
2,0 0.8 0. 400 2. 409 0.963 0. 400 1,000 -2.000 0. 500
2,0 1.0 0. 500 2. 409 1,204 0. 500 1.000 -2,000 0. 500
2.0 1.2 0. 600 2, 409 1, 445 0. 600 1.000 -2.000 0. 500
2.0 1.4 0. 700 2. 409 1. 686 0. 700 1.000 -2.000 0. 500
2.0 1.6 0. 800 2. 409 1,927 0. 800 1.000 -2.000 0. 500
2.0 1.8 0. 900 2. 409 2.168 0., 900 1,000 -2.000 0. 500
2,0 2.0 1. 000 2. 409 2. 409 1. 000 1.000 -2.000 0.859
r - ellipse radii
R - rectangle radii
R R
Scale Facto =kyy = — =_% =0,830
Tw Ty

20 data points
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TABLE 9: PARAMETERS OF ELLIPSES FITTED TO RECTANGLES
BY THE ITERATIVE MINIMIZATION METHOD
(48 DATA POINTS)

R R, Ry;/Ry Ty ry r,/re A B 0
2.0 0.2 0.100 2,374 0. 237 0.100 1,000 -2,000 0. 500
2.0 0.4 0. 200 2,374 0. 475 0. 200 1,000 -2,000 0. 500
2.0 0.6 0, 300 2,374 0.712 0. 300 1.000 ~-2,000 0. 500
2.0 0.8 0. 400 2,374 0.950 0, 400 1. 000 -2,000 0, 500
2.0 1,0 0. 500 2,374 1,187 0, 500 1,000 -2,000 0, 500
2.0 1.2 0. 600 2,374 1. 424 0. 600 1,000 -2.000 0. 500
2.0 1.4 0. 700 2,374 1,662 0. 700 1.000 -2,000 0. 500
2,0 1.6 0. 800 2,374 1. 899 0. 800 1. 000 -2.000 0. 500
2,0 1.8 0.900 2,374 2,137 0.900 1.000 -2,000 0.500
2.0 2,0 1. 000 2,374 2,374 1. 000 1.000 -2,000 0,864
r - ellipse radii
R - rectangle radii
Ry Rz
Scale Facto =kyg = —=—— =0,842
Tw Tz

48 data points

81



TABLE 10:

el
g

1l\Jl’\.)[\)l\)[\.)N‘l'\-)_l'\-)[\)[\)

OO O OO OO OO Oo

BY THE ITERATIVE MINIMIZATION METHOD
(100 DATA POINTS)

R, Rz/Ry, .
0.2 0.100 2. 368
0.4 0. 200 2. 368
0.6 0. 300 2. 368
0.8 0. 400 2.368
1.0 0. 500 2. 368
1.2 0. 600 2. 368
1.4 0. 700 2.368
1,6 0. 800 2. 369
1.8 0. 900 2.368
2.0 1. 000 2,368

r - ellipse radii

R - rectangle radii

Scale Factor

Vi~~~ =+ 000 O

Iy

. 237
. 474
. 710
. 947
. 184
. 421
. 658
. 895
. 131
. 368

:kIOO =

100 data points
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— O O OO OO oo Co

r,/ry

. 100
. 200
. 300
. 400
. 500
., 600
. 700
. 800
. 900
. 000

Rw

T'w

A
1.000 -2,
1,000 -2.
1.000 -2,
1.000 -2.
1,000 -2,
1.000 -2,
1. 000 - 2.
1.000 -2,
1,000 -2.
1,000 -2.

Ry
=~ =0, 845

Tz

000
000
000
000
000
000
000
000
000
000

[=NeNeoNeoNoNoNoeNoNeNeo

PARAMETERS OF ELLIPSES FITTED TO RECTANGLES

. 500
. 500
. 500
. 500
. 500
. 500
. 500
. 500
. 500
. 500



FIELD OF VIEW

4.00

3.00 3.50

Y-AXIS

2.50
1

X-RX1S
-
cE
8 DATA POBINTS
STANDARD DEVIATION = 0.0
REFERENCE RECTANGLE LEAST-5QUARES RECTANGLE
X-AADIUS = 2.000 X-RAOIUS = 2.001
Y-BADIUS = 1.000 Y-RADIUS = 1.001
¥-TRANSLATION = 1,000 X-TRANSLATIAGN = 1,000
Y-TRANSLATIBN = -2.000 Y-TRANSLATION = -2.000
ROTATIGON IN DEGREES = 28.6U8 ROTATION IN DEGREES = 28.6uU8

Fig. 15--Rectangles fitted to data points, ¢ = 0.0 .
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FIELD OF VIEW

-§.00 -3.50 -3.00 -‘Z.SU -'Z_CID
N

Y-RAX1S5

-1.50 -1.00 -0.50 sa.oo 0.50 \.aa t.50
1 L A

REFERENCE RECTHANGLE

20 DATA POINTS
STANDARD DEVIATION = 0.0

X~-RADIUS 2.000
Y-RADIUS = 1.000

X~-TRANSLATION = 1.000

Y~-TRANSLATION = -2,000

ROTATION IN DEGREES

X-RADIUS
Y-RADIUS

1.999
1.000

X-TRANSLATION = 1.000
Y-TRANSLATION = -2.000
28.649 ROTATION IN DEGREES = 2B.6UB

Fig. 15--Continued
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T-RK1S

~k.00 -IJ.EU —IJ.UU ;Z.SU —IZ.UU —II.ED -JI.UU -IIJ.SI] 80d.00 0.5a 1L.00 1.50 2.90 2.s50 3.00 3.50 u.
L

X-AXIS
Ug DATA POINTS
STANDARD DEVIATION = 0.0
REFERENCE RECTANGLE LEAST-SQUARES_ RECTANGLE
X-RADIUS = 2.000 X-AADIUS = 1,999
Y-RADIUS = 1.000 Y-ARDIUS = 0.999
X-TRANSLATIAN = 1.000 X-TRANSLATIAGN = 1.000
Y-TRANSLATIOGN = -2.000 Y-TRANSLATIAGN = -2.000
ROTATION IN DEGREES = 2B.6UB AATATIOGN IN DEGREES = 25.6uUB

Fig. 15--Continued .

85



FIELD OF VIEW

4.00

T-AX1S

X-AX1S
100 DATA POINTS
STANDARRD DEVIATION = 0.0
REFERENCE RECTANGLE LEAST-SOUARES RECTANGLE
X-RADIUS = 2.000 X-RADIUS = 2.001
Y-RADIUS = 1.000 Y-RADIUS = 1.001
X-TAANSLATION = 1.000 X-TRANSLATIOGN = 1.000
Y-TRANSLATION = -2.000 Y-TRANSLATION = -2.000
RBTATION IN DEGREES = 28.6uU8 RBGTATION IN DEGREES = 28.6uU8

Fig. 15~-Concluded

86



FIELD OF VIEW

y.00

T-AXIS

8 ORTA POINTS
STANDARD DEVIATIGN = 0.1

REFERENCE RECTANGLE LEAST-SQUARRES RECTANGLE
X-RADIUS = 2,000 X-RADIUS = 2.079

Y-RADIUS = 1.000 Y-RADIUS = 0.973

X-TRANSLATION = 1.000 X-TRANSLATIAON = 0.820
Y-TRANSLATION = -2.000 Y-TRANSLATIGN = -2.160
ROTATION IN DEGREES = 28.648 ROTATION IN DEGREES = 30.56U4

Fig. 16~--Rectangles fitted to data points, ¢ = 0.1 .
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FIELD OF VIEW

H.og -3.50 -3.00 -2.50 -2.00
L h I i

y.00

Y-AXIS

REFERENCE RECTANGLE

20 DATA POINTS
STANDARD DEVIATION = Q.1

X-RADIUS = 2.000
T-RADIUS = 1.000
X-TRANSLATION = 1.000
Y-TRANSLATIOGN = -2.000
RBTATIOGN IN DEGREES =

X-RADIUS
T-RADIUS

X-TRANSLATION
Y-TRANSLATIGN
28.648 RATATION IN DEGREES

Fig. 16--Continued .
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FIELD OF VIEW

4,00

f-AX1S

h.oo -3.50 -3.00 -2.5a -2.00 -1.50 -1.00 -0.s50 Sd.co 0.50 1.00 1.50 2.00 2.50 3.00 3.50 u
I 1 L L 1 1 { = - ] [N W I 1

Up OATA POINTS
STANDARD DEVIATIGN = 0.1

REFERENCE RECTANGLE LEAST-SQUARES RECTANGLE
X-RABIUS = 2.000 X-RAOIUS = 1.992

Y-RADIUS = 1.000 Y-RADIUS = 1.031

X-TRANSLATION = 1.000 X-TRANSLATIAGN = 1.021
Y-TRANSLATIAN = -2.000 T-TRANSLATIOGN = -2.0uy
ROTATION IN DEGREES = 28.648 RATATION IN DEGREES = 29.634

Fig. 16—-Continued .
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FIELD OF VIEW

w.00

-H.00 -3.50 -F.UD —F.Sﬂ —F.DD
I

-1.50
1

Y-AX!IS

-1.00 -0.s0  20.00
L L

REFERENCE RECTANGLE

X-RADIUS
Y-RADIUS

2.000
1.000

X-TRANSLATIAN = 1.000

Y-TRANSLATIOGN = -2.000

RATATION IN DEGREES

28.648

100 DATA POINTS
STANDARD DEVIATION = 0.1

X~-RAOIUS 1.957

Y-RADIUS 1.042
X~-TRANSLATION = 0.979
Y-TRANSLATIOGN = -2.033
ROTATION IN DEGREES = 28.195

Fig. 16--Concluded .

90

. ag

P~

st 1



FIELD OF VIEW

.00

8
el
«
a
3
T R
Lol
3
S
it
a
v
o
]
o
w
T
-h.00 -3.50 -3.00 -2.50 ~2.00 -1.50 -1.00 -Q.50 Sda.oo 0.s50 1.00 1.50 2.00 20 3.a0 3.50 w.og
1 1 | - -l 1 1 1 D' 1 1 1 4_ 1 L

8 DATA POINTS
STANDARD DEVIATIGN = 0.2

REFERENCE RECTANGLE LEAST-5QUARES RECTANGLE
X-RADIUS = 2.000 X-RADIUS = 2.200

Y-RADIUS = 1,000 Y-RADIUS = 0.960

X-TRANSLATION = 1.000 X-TRANSLATIAN = 1,289
Y-TRANSLATIAN = -2.000 Y-TRANSLATIGN = -1.817
ROTATION IN DEGREES = 28.6U8 ROTATION IN DEGREES = 35.822

Fig. l7--Rectangles fitted to data points, ¢ = 0.2 .
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FIELD OF VIEW

M.CO

-3.50
Faa

-3.00
L

-2.50
1

~2.00 -1.50
] ]

T-RAXIS

-1.00 -0.50 3d.oo 0.50 1.0a t.
1 4 .

3.00
)

REFERENCE RECTHANGLE

20 DATA PAINTS
STANDARD DEVIATION = 0.2

X-RADIUS
Y-RADIUS
X-TRANSLATIOGN
Y-TRANSLATIGN
ROTATION IN DEGREES

2.000
= 1.000

1.000
-2.000

X-BADIUS
Y-RADIUS

= 28.6U8

Fig. 17--Continued .
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0.878

-2.107

29.308

1.993
1.092
X-TRANSLATIGN
Y-TRANSLATION
ABTATIAGN IN DEGREES

ao



FIELD OF VIENW

4.0

-3.50

-3.00

g
“
w0
—
&
)
= e
8
o
a
v
)
)
o
bt}
S
-2.50 -2.00 -1.50 -1.00 -0.50 Zdqoo 0.50 1.00 1.50 2.00 2.50 3.00 3.50 Y
Tt L h = 1 1 ! L

REFERENCE RECTANGLE

Us DATA POINTS
STANOARD DEVIATIAN = 0.2

X-RADIUS
Y-RADIUS
X-TRANSLATIQN
Y-TAANSLATION
RATATION IN DEGREES =

28.6Uu8

Fig. 17--Continued .
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AOTATION IN DEGREES =

= 2.000 X-RADIUS = 1.914

= 1.000 Y-RADIUS = 1.Q7S
= 1.000 X-TRANSLATION = 1.08u
= ~2.000 Y-TRANSLATIAGN = -1.998

32.288

oo



FIELD OF VIEW

Y-RAXIS

1.00
i

a.so

N.oo -3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 8g.00 a.s0 t.00 1.50 2.00 2.50 3.00 3.50 yl.oo
L L 1 1 L L L = = L

100 DATA POINTS
STANDARRD DEVIATION = 0.2

REFERENCE RECTANGLE LEAST-SQUARES RECTANGLE
X-BADIUS = 2.000 X-RADIUS = 1.990

Y-RADIUS = 1.000 Y-RADIUS = 1.031

X-TRANSLATIAON = 1.000 X-TRANSLATION = 0.993
Y-TRANSLATIAON = -2,000 Y-TRANSLATION = -1.852
RATATION IN DEGREES = 28.6uB RATATIAN IN DEGREES = 28.95UY

Fig. 17-~Concluded .
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L

FIELD OF VIEW

4y.00

1-RX1S

-k.oa -3.50 -3.00 -2.50 -2.00 -1.50
[ [y L t

8 DATA POINTS
STANDARD DEVIATION = 0.3

REFERENCE RECTANGLE LEAST-SQUARES RECTANGLE
X-RADIUS = 2.000 X-RADIUS = 2.186

Y-RADIUS = 1.000 Y-RADIUS = 1.008

X-TRANSLATIGBN = 1.000 X-TRANSLATIAN = 1,285
Y-TRANSLATIGN = -2.000 Y-TRANSLATIAGN = -1.560
RAGTATION IN DEGREES = 2B.648 BATATION IN DEGREES = 27.806

Fig. 18--Rectangles fitted to data points, o = 0.3 .
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FIELD OF VIEW

y.00

1-AX1S

k.00 -3.50 -3.00 -z.50 -2.00 -1.50 -1.00 -0.50 So.o0 0.s50 1.00 1.50 ZI.UU 2.5G- 3.00 3.50 yl oo
i L ( I 1 t L8 . R Lob 5. -

20 DATA POINTS
STANDARD DEVIATIGN = 0.3

REFERENCE RECTANGLE LEAST-SQUARES RECTANGLE
X-RADIUS = 2.000 X-RADIUS = 2.069

Y-RADIUS = 1.000 Y-RADIUS = 1.118

X-TRANSLATION = 1.000 X-TRANSLATION = 1.082
T-TRANSLATION = -2.000 Y-TRANSLATION = -2.020
RATATION IN DEGREES = 28.6U8 RBTATION IN DEGREES = 32.435

Fig. 18--Continued .
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FIELD OF VIEW

4.00

Y-AXIS

-p.oa -3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 Sd.uo 0.50 1.00 1.50 2.ao 2.50 3.00 3.50 L'
Lo 5 i 1 1 ] [l - | ) [N [N i f
RN S

U8 OATA POINTS
STANDARD DEVIATION = 0.3

REFERENCE RECTANGLE LEAST-SQUARES RECTANGLE
X-RADIUS = 2.000 X-RADIUS = 2.002

Y-RADIUS = 1.000 Y-RADIUS = 1.168

X-TAANSLATION = 1.000 X-TRANSLATIAN = 0.385
Y-TAANSLATION = -2.000 Y-TRANSLATION = -2.167
ROTATION IN DEGREES = 28.6u8 RBTATIGN IN DEGREES = 28.298

Fig. 18--Continued .
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FIELD OF VIEW

-2.00 + -\so

-2.50

-3.00

100 DATA POINTS

STANDARD DEVIATION = 0.3

REFERENCE RECTHANGLE

X-RADIUS = 2.000
Y-RADIUS = 1.000
X-TRANSLATIGN = 1.000
Y-TAANSLATIAGN = -2.000

ROTATIAN IN DEGREES = 28.5UB

8
o
[
—
&
[
>~ o
o
2
s
]
g
o
n
=
+
-h.oo -3.50 -3.00 -2.50 -2.00 ~1.50 -1.00 -0.50  Sd.oo 9.50 1.00 .50 2.00 2.50 3.q0 3.50 4.oa
i ] L L 1 1 1 t 1 . 1 \ ——L -
-
X-AXIS4
2 +
s - +
' +
+
o
S +
=] -
v
- +
+ - +
+

X-RADIUS
Y-RADIUS

X-TRANSLATION =
Y-TRANSLATIAN =
ROTATIAGN IN DEGAREES =

Fig. 18--Concluded .
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FIELD OF VIEW

y.00

T-RX1S

-h.oo -3.50 -3.00 -2.50 -z.00 -1.80
S W e -

8 DATA PAINTS
STANDARD DEVIATION = 0.4

REFERENCE RECTANGLE LEAST-SQUARES RECTANGLE
X-RADIUS = 2.000 X-RAOIUS = 3.062

Y-RADIUS = 1.000 Y-RADIUS = 1.026

X-TRANSLATIAN = 1.000 X-TRANSLATIGN = 2.039
Y-TRANSLATIQGN = -2.000 Y-TRANSLATIAGN = -1.00U

ROTATION IN DEGREES = 28.6uUB RATATION IN DEGREES = U7.132

Fig. 19--Rectangles fitted to data points, ¢ = 0.4 .
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-h.aa -3.50 -3.ao -2.5a -2.00 -1.50 -1.00 -0.50 gu.ﬂu 1.50 1.00 1.S0 4 2.00 /Z.gq 3.00 3.50 yl.og
1 1 1 L 1 1 N S [ —— —— [ S, oA [ S — L
5 = \
-
S
- X AL

.
.
\
A

20 DATA POINTS
STANDARD DEVIATION = 0.4

REFERENCE RECTANGLE LEAST-SOUARES RECTANGLE

X-RADIUS = 2.000 X-RADIUS = 2.338

Y-RADIUS = 1.000 Y-RADIUS = 1.226

X-TAANSLATION = 1.000 X-TRANSLATION = 0.763

Y-TARANSLATION = -2.000 Y-TRANSLATION = -1.,697

ACTATION IN DEGREES = 28.6u48 ROTATION IN DEGREES = 17.918

Fig. 19--Continued .
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=h.oo -3.50
- _a

REFERENCE RECTANGLE

X-RADIUS
Y-BAROIUS

-3.00 -2.50
[ 1

-z.0o
a

FIELD OF VIEW

a
=)

e
o
n

L

Y-R¥1S

ug 0OATA POINTS
STANDARD DEVIARTION = 0.U

2.000
1.000

X-TRANSLATION = 1.000

Y-TRANSLATIGBN = -2.000

AATATIAN IN DEGREES =

28.6u8

X-RADIUS
Y-RADIUS

3.368
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CHAPTER VI

SUMMARY AND CONCLUSIONS

This investigation has been aimed at a solution of the problem of
real time landmark identification from spacecraft optical fields, The
approach which has been taken relies upon the reduction of two dimen-
sional optical images to a discrete set of data points associated with the
boundary of an object to be identified. Granted such a set of points, the
work reported here is directed toward the fitting of computationally
generated images to the real image points by means of an algorithm based
upon nonlinear regression analysis.

In order to obtain some concrete results, the present investigation
has been limited to a consideration of arbitrary elliptical and arbitrary
rectangular objects. While such objects may be relatively rare among
all possible landmarks of interest, the approach taken is one of approxi-
mation of irregular objects by elliptical or rectangular templates. That
is, the methods developed are tolerant of large amounts of noise whether
this noise is introduced by measurement and sensing processes or by
the deviation of real objects from elliptical or rectangular shapes. Thus,
if a known object is within the field of view, precise information about its
size, location, and orientation can be obtained, for example, from the
parameters of the least squares ellipse fitted to its boundary points.

The computational procedures described in this report are totally
insensitive to image rotation, translation, and scale change. So far as
is known to the authors, no alternative image processing technique exists
with a capability of producing extremely accurate object parameter esti-
mates under such conditions. The algorithms presented are thus felt to
provide the first feasible method for the generation of very precise
navigational information from the optical images of known landmarks.

While all of the results contained in this report relate to two
dimensional objects, it appears that the basic approach 1s applicable to
three dimensional image analysis as well, Specifically, it seems feasible
that a computational procedure could be developed which would be capable
of producing a replica of the image of a given three dimensional object
produced by a particular optical system with a specified spatial relation-
ship to the object. From such a synthetic image, it ought to be straight-
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forward to extract boundary points which could then be compared to the
boundary points of the real scene, Iterative adjustment of the spatial
parameters, used to generate synthetic images could then be accomplished
by the nonlinear regression program included in this report so as to op-
timize the fit of the synthetic image to the real image. Such an exten-

sion of the present work would permit the use of optically derived

guidance information in such difficult tasks as automatic orbital rendezvous
and docking of spacecraft,

In summary, the ability of a digital computer to extract accurate
guidance and control signals from optical fields has been established by
this study. Additional work along the lines indicated by this research
should eventually produce a very valuable means for a spacecraft or
robot vehicle to obtain quantitative information regarding its position
and angular orientation relative to objects within its field of view,

108




APPENDIX I

GENERATION OF DATA POINTS

The data points which are presented to the parameter estimation
algorithm are not physically measured points since no equipment was
available for this purpose. The entire data acquisition process is
instead simulated by a digital computer. The following sections briefly
explain how the data points which lie on the boundary of an ellipse or a
rectangle are generated, as well as how noisy data points may be gener-
ated. The subroutine which generated the data points is denoted by DATA.

Ellipse

The generation of the data points lying on the boundary of an
ellipse shall be considered first, An ellipse, as shown in Figure A-1,
may be expressed analytically by Egqn, A-1,

-
=

Fig. A-1--Ellipse in w, z-reference frame,

e, wo +ep 22 =1 (A-1)
where
e =21  ang e, =1
r2 rz (A-2)
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Thus, if one is given the two parameters e, and e, then the corresponding
ellipse in the w-z plane is completely specified. It is desired to represent
this ellipse's boundary by some finite number of points. For a given
number of data points, say N, there are infinitely many different ways in
which these points may be positioned on the ellipse's boundary. However,
it seems quite unrealistic to have the data points very dense on one por-
tion of the boundary and very sparse, or nonexistent, on the remaining
portion of the boundary, Perhaps the most realistic situation is for the
data points to be uniformly distributed on the boundary of the ellipse.

This would require the distance between any two adjacent data points to

be L./N, where L is the length of the boundary of the ellipse. This
particular distribution of the data points on the boundary of the ellipse

was not used, however, because of the complex computer programming
which would be involved and because in practice the physical measuring
equipment probably would not select the data points in precisely this
manner anyway.

The method which was employed to select data points on the
boundary of the ellipse consists of dividing the w-axis diameter of the
ellipse into N/2 equal length segments when N data points are desired.
This, of course, requires N to be an even number, This procedure is
shown in Figure A-2 for N = 10,

N

Fig. A-2--Data points corresponding to ellipse in w, z-
reference frame.

The N data points then comprise those points on the boundary of the
ellipse whose w-coordinates are the same as the w-coordinates of the
end points of the segments of the w-axis diameter,
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After the w, z-coordinates of the data points which lie on the
boundary of the ellipse have been determined, it is necessary to find
the coordinates of these same data points with respect to the reference
X, y-coordinate system. These two coordinate systems are shown in
Figure A-3,

Fig. A-3--Data points corresponding to ellipse in X, y-
reference frame.

Once the x and y-translation (denoted by A and B, respectively)
of the center of the ellipse and the rotation ( denoted by 0) of the w-axis
of the ellipse are specified, then the x, y-coordinates of the data point
having w, z-coordinates (wj,zj) are

w; cos O -~ z; sin 8 4+ A (A-3)

x5

wi sin 6 + z; cos 6 + B (A-4)

¥i

The x, y~coordinates of the data points are then taken as the
coordinates of the data points which represent the ellipse whose parameters
are now to be estimated.

Rectangle

The data points which lie on the boundary of a given rectangle
are generated in a slightly different manner than those of an ellipse.
Figure A-4 shows a rectangle whose center is at the origin of the w, z-
coordinate system.
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Fig. A-4--Rectangle in w, z-reference frame,

The rectangle's dimension in the w-direction is 2rw, while its
dimension in the z-direction is 2r;. The dimensions ry, and r, may be
thought of as "radii" of the rectangle.

The data points are selected such that one quarter of the total
number of data points lie on each side of the rectangle. This requires
N to be devisible by four. The data points are further restricted to be
equally spaced along each side. Therefore, the spacing between data
points which lie on the vertical boundaries is 8r /N while the spacing
between data points which lie on the horizontal boundaries is 8r,/N.
Once the w, z-coordinates of all the data points lying on the boundary
of the rectangle are found, their corresponding x, y-coordinates may be
determined from Eqns, A-3, 4,

Noise

The preceeding discussion has briefly explained how the data
points corresponding to either an ellipse or a rectangle are generated,
being given the parameters e;, €,, A, B, Oor ry, rz A, B, 0. These
data points fall exactly on the boundary of the appropriate pattern.

Since there is no error in the coordinates of these data points, they may

be considered as noiseless data points.

In a realistic system, however, one would expect that the mea-
surement points would not exactly overlay the boundary of the pattern
from which they came, This error may be due to several different
reasons, For instance, if the field of view has been slightly clouded
over, or defocused, then the boundary of the pattern is no longer precise
and the exact coordinates of points lying on the boundary can only be
estimated, Even if the field of view is clear there is still the possibility
that the electronic equipment associated with the optical system can com-
mit errors, be they internal or transmission errors. Furthermore,
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there is always the quantization error associated with analog to digital
conversion. All of these errors may be considered as forms of noise.

Therefore, in order for the artificially generated data points to
realistically correspond to physically measured data points it is
necessary to degrade the artificially generated data points by corrupt-
ing them with some type of noise. A detailed analysis of the physical sys-
tem would be required in order to know the exact nature of the actual
noise; i,e., its distribution and whether it is additive, maultiplicative,
or whatever. In this study no particular physical system was considered;
therefore, the noise samples were assumed to be additive, statistically
independent, gaussian noise samples. How well this artificial noise
resembles the actual noise in a physical system was not considered.

The gaussian noise was generated by the subroutine GAUSS which
is in the library of the IBM 360/75 at The Ohio State University Computer
Center. The subroutine permits one to specify both the mean and the
standard deviation of the gaussian noise samples which it is to generate.
The subroutine makes use of another library subroutine called RANDU
which generates uniformly distributed random numbers in the range 0-1.
The subroutine GAUSS approximates a gaussian random variable by
adding together twelve uniform random variables, making use of the
Central Limit Theorem.

Since it is assumed that the noise is additive gaussian, the numbers
which are generated by GAUSS are simply added independently to each
coordinate of the data points. Thus, if the coordinates of a noiseless data

point are given by (X;,Y;), then the coordinates of the corresponding
noisy data point are (xi,yi), where

xj =Xj + nj (A-5)
yi=Y;+n54 (A-6)

where n; and nj 4 1 are two consecutive noise samples.
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APPENDIX II

DISCUSSION OF CRITERION FUNCTIONS

It is important to recognize the fact that the criterion function
used in the case where the error function is a linear function of a set of
parameters (one step minimization method) is not identical ( even to
within a scale factor) to the criterion function which results when the
error function is a nonlinear function of a different set of parameters
(iterative minimization scheme).

To be more specific, suppose that the criterion function resulting

from the linear error function (Eqn. 3. 53) is denoted by $1, and written
as

- > - _T

é1,(x,v;p) =

e e

N

Z (plxiz+ P2XiVi + PsY¥ + pPuaxj + Psy; + 1)2
b= (A-7)

The minimization of ¢y is taken with respect to the parameter

vector P = (P15 P2 Pss Pas ps)L . If 'ﬁ* is that value of p which results in
CIJL attaining its unique minimum value, d)L"', then

3 (A-8)

T
The ellipse parameter vector <= (e;,ez, A, B,0) is then found
from Eqn. (3.42), that is,

T =3F (A-9)

The criterion function resulting from the nonlinear error function,
denoted by ¢y, may be written as

—T»
e’ e

(TR ()

N

2
Z(pl><%+sziYi+psY{"+p4xi+psYi+pa +1)
i=1

(A-10)
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T
where the vector § = (p;,p2:Ps-p4s P5s» ps) is a nonlinear function
of the ellipse parameter vector @ with which the minimization of ¢N is
taken. The vector (<) is given by Eqns, (3.10 - 3, 15),

Note that ¢ may be factored

N
2 2 2
¢N=Z(ps-1) [;%J_—l x5 +;‘:—fl— xiYi+pf_31 vt +p:_¢1 x; + piflyiﬂ]
i=1
= (pe-1)" 9, (A-11)

Since p is a function of p (Eqn. 3.39), the factor (pe-1)° may
. - .
be represented by some function, g(p), to give

¢N(;’?;-§) = g(P) ¢L(;'§;; P) (A-12)
If _]_5** is that value of P for which ¢y attains its minimum value,
denoted by ¢y then
¥ o e R . - e
¢N(x,y;p ) = min ¢N(x,y;_§) (A-13)
p
and so
e - - e % * - ¥
on(E V0 ) <gl(P) ¢ (X¥:D ) (A-14)

One should note that if ¢y is divided by the factor (pe-1) ? before
the minimization with respect to @ is taken, then the two criterion func-
tions would be identical and both minimization techniques would yield the
same value for the minimizing parameter vector (assuming no boundaries
are encountered),

A comparison of d)i and ¢JN is made in Table A. ?he right hand
side of Eqn. (A-14) is also tabulated, being denoted by ¢ . The values
of the criterion functions are those that were obtained by using the two
minimization schemes on an ellipse which is characterized by

0. 25
1. 00
S = 1. 00
-2.00
0. 50 (A-15)

The parameter vector estimates which correspond to these values for the
criterion functions are shown in Tables 1 and 2 in Chapter 1IV.
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It is interesting to note that in every case ¢, < 4)* in Table A-I,
o N =
as Egqn. (A-14) implies.

TABLE A-I: COMPARISON OF CRITERION FUNCTIONS

ate .
% " *

o N ¢L ¢ ¢N

0.0 10 0.1564x 10-7 0.2496 x 10-© 0,6555x% 10-11
0.0 20 0.2379x 10-2 0.3795 x 10-6 0.1846 x 10-10
0.0 50 0.6631x 1077  0.1060 x 10-4 0.7957 x 10-10
0.0 100 0.8263 x 10~ 0.1319 x 10”4 0. 4480 x 10-10
0.1 10 0.1757 % 10"Y  0.3219 x 108 0.2911 x 10°
0.1 20 0.1747x 101 0.3099 x 10, 0.2913 x 100
0.1 50 0.8430x10(')1 0.1313 x 10, 0.1191 x 1oi
0.1 100 0.1697 x 10 0.2710 x 10 0.2449 x 10
0.2 10 0.2264x% 10(')1 0.3992 x 10° 0. 3467 x 10(1’
0.2 20 0.1611x 10 0. 2566 x 10} 0.1687 x 10
0.2 50 0.2627x 108 0. 5528 x 10, 0. 3989 x 10;
0.2 100 0.5216 x 10 0.1164 x 10 0.8214 x 10
0.3 10  0.9620 x 106l 0.2193 x 101 0.1232 x 10}
0.3 20 0.3844x 10 0.6326 x 10 0.2912 x 1oi
0.3 50 0.7211 x 102 0.1151 x 102 0.6331 x 10
0.3 100 0.1881 x 10 0. 3245 x 10 0.1480 x 102
0.4 10 0.2027x 108 0.9334 x 102 0.5916 x 100l
0.4 20 0.2268x 10 0.1817 x 107 0.6042 x 10
0.4 50 0.1097 x 10} 0.3412 x 107 0.9126 x 10
0.4 100 0.1544x 101 0.1190 x 10 0.1520 x 102
0.5 10 0.6232x10°Y 0.7164x 10(2’ 0. 5555 x 10(1’
0.5 20 0.4839 x 10° 0.1388 x 107 0.4421 x 10
0.5 50 0.1257x 10} 0.7153 x 10 0.8891 x 10%
0.5 100 0.3031 x 107 0.1048 x 103 0.2317 x 102
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APPENDIX II1

COMPUTER PROGRAM

A listing of the Fortran program which was used to estimate the
five parameters associated with an ellipse is given in this appendix. The
program has been broken down into a main program along with several
subroutines, each of which has a specific function. Each subroutine is
briefly discussed in the following paragraphs.

MAIN Program

The main program performs three functions. The first function
is to read all the required input information for the overall program.
Secondly, the main program calls the various subroutines in the correct
sequence such that the iterations for the estimates of the parameters are
correctly performed. Finally, the main program writes out the input
information as well as the best estimate for the parameter vector.

The main program that is listed in this appendix is the one which is
used in the estimation of the parameters of an ellipse. The main program
which is used for the estimation of the parameters of a rectangle is iden-
tical to the listed main program except that one statement is added which
relates the size of the fitted ellipse to the size of the corresponding rec-
tangle, This scale factor is discussed in Chapter V.,

The main prograrn requires the following inputs:

NPAR the number of parameters which are to be
estimated.

NPOINT the number of data points which lie on
the boundary of the unknown pattern,

NTRIAL the total number of independent local
minimizations of the criterion function
with respect to the parameter vector.
NTRIAL > 1.
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MSMSQ

MRAND

NSET

CE
MINPAR
MAXPAR

SIGMA

AVE

FSTOP

EPHI

EC

°
EGRAD

the maximum number of times which the
LOCMIN subroutine may call the SUMSQR
subroutine,

the number of independent parameter vectors
which are randomly selected by the RANSER
subroutine,

the number of patterns whose parameters
are to be estimated.

the initial guess for the unknown
parameter vector,

the vector corresponding to the lower
limits for the parameters,

the vector corresponding to the upper
limits for the parameters.

the standard deviation of the gaussian
noise which is added to the simulated
data points generated in the DATA
subroutine.

the average value of the gaussian
noise associated with SIGMA.

the upper limit for the absolute value
of . The program is terminated if |F|
becomes larger than FSTOP.

the lower limit for DPHI. The program

is terminated if DPHI be¢omes smaller

than EPHI, where d¢ = NCi)-¢(T + 1)
& 35)

the lower limit for DC,
terminated if DC becomes smaller than
EC, where AEiTA'c‘i
dC - - T-y
ci €1

The program is

the lower limit for the squared magnitude
of the gradient vector. A The program is
terminated if |V¢( cy)| ? becomes smaller
than EGRAD,
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EBDRY a constant which is used in the GRPREX
subroutine to prevent division by zero,

DATA Subroutine

The purpose of the DATA subroutine is to artificially generate the
data points which lie on the boundary of either an ellipse or a rectangle.
Although the DATA subroutines corresponding to both an ellipse and a
rectangle are shown in the listing, only one of them is included in the
program when it is actually used, Appendix I gives more details as to how
the data points are generated and how simulated noise is added to them.,

SUMSQR Subroutine

The SUMSQR subroutine simply evaluates the criterion function
for a specific value of the parameter vector. It also has an instability
indicator, KX, which is set to one if the absolute value of F exceeds
FSTOP.

LOCMIN Subroutine

The LOCMIN subroutine performs a local minimization of the
criterion function with respect to the parameters, It does this by calling
the next three subroutines, It also checks the various criteria for ter-
minating the program.

REGRES Subroutine

The REGRES subroutine evaluates the criterion function ( PHI),
the gradient of the criterion function (GRADP), and the Gauss-Newton
parameter change vector ( BETA) for a specified parameter vector (C)
which is supplied by the LOCMIN subroutine. A library subroutine ( MINV)
is used for matrix inversion.

GRASER Subroutine

The GRASER subroutine is called only when the Newton-Raphson
method is used to determine the next value for the parameter vector., The
GRASER subroutine finds the optimum binary scale factor by which to
multiply Ac;.
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GRPREX Subroutine

The GRPREX subroutine is called only when the full Newton-Raphson
& 31) 6‘1’( i)
- 2
w2y

the gradient onto the constraint surface, after which the GRASER subrou-
tine finds the optimum binary scale factor for this projected gradient.
The GRPREX subroutine has an output variable, KEXIT, which when set
to one indicates that the parameter vector is on a constraint boundary of
the constraint region, R.

step (AT, = - ) violates a range constraint. It then projects

RANSER Subroutine

The RANSER subroutine selects a given number ( MRAND) of
parameter vectors randomly, using a uniform distribution, and determines
that parameter vector which yields the smallest value for the criterion
function. This parameter vector is then used as the initial guess for
another local minimization. The RANSER subroutine uses a library sub-
routine, RANDU, for its uniform number generator.

A listing of the two library subroutines, RANDU and GAUSS, which
generate numbers possessing uniform and normal distributions, respec-
tively, is given at the end of the program listing for the sake of complete-
ness,
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SUBROUTINE RANDU (IX, IY, YFL)
IY = IX * 65539
IF (IY) 5,6,6

IY = 1Y + 2147483647 + 1

YFL = 1Y

YFL = YFL * , 4656613 E-09
RETURN

END

SUBROUTINE GAUSS (IX, S, AM, V)
A=0.0

DO 501I=1,12

CALL RANDU (IX, IY, Y)

IX = 1IY

A=A+Y

v

(A-6.0) *S + AM .
RETURN

END
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5001

5002

5003

5004

5005

5C06

5007

5008

5009

5010

all

5012

5013

DIMENSION CO(10),CE(10),C1(10)

REAL MINPAR(10),MAXPAR{10)

COMMON/COML/FSTCP

CUMMCN/COM3/NGAUS

NGAUS=317578125

K=l

CALL SCLOKI

READ (5,5001) NPAR.NPOINT,NTRIAL sMSMSQyMRAND,NSET

FURMAT (615)

READ (5,5002) (CO(T)sI=1,NPAR) {{CE(I),I=14NPAR) ¢ {MINPAR{I)yI=1,NPA
LR o (MAXPAR(T), I=1sNPAR) 4 SIGMA4AVE ,FSTOP 4 EPHI » EC yEGRAD ¢ EBDRY
FORMAT (5F14.8)

WRITE (6,5003)

FORMAT (YL 27120 700700111711%

1 NOUNLINEAR SYSTEM PARAMETFR ESTIMATION'/////77)

WRITE (6,45004)

FORMAT (°* NPAR NPOINT NTRIAL
1 MSMSQ MRAND NSET*/)

WRITE (645005) NPARyNPOINToNTRIAL,MSMSQ,MRAND,NSET

FURMAY (110,5(10X,110))

WRITE (6+5006)

FORMATY (/7/7/° S1GMA AVE FSTOP

1 EPHI EC EGRAD EBDRY /)

WRITE (645007) SIGMA,AVE,FSTOP,EPHI+EC,EGRAD,EBDRY

FORMAT (T124F6.30T289F5.29T389F13.14755,F12,10,T69,F12.10,T83,F12.
110+T100+F12.10)

WRITE (6,5008)

FORMATY (/7/77° I coll)

1 CE(D) MINPAR(T) MAXPAR(I) /)

WRITE (655009) (IoCO{I)+CE(I)oMINPAR(I) MAXPAR{I),1=1,NPAR)

FORMAT (12047369 FBo4eT569FBa4eTT6,FB8.44T96,FB.&)

NSMSC=0

CALL DATA (COySIGMA,AVE.NPOINT)

CALL SUMSQR {CEsPHI KXyNSMSQ:NPOINT,NPAR)

TELKX) 343,52

WRITE (6,5010)

FURMATY (/777777777 THE INITIAL PARAMETER ESTIMATES PRODUCE AN UNS
ITABLE RESPONSE. DESCENT TO A MINIMUM WILL NOV BE CARRIED OUT.!)

GO TC 4

CALL LGCMIN (CEoPHI MINPAR,MAXPARGEPHIZECyEGRADEBDRY ,MSMSQyNPOINT
1. NPAR)

IFINTRIAL-1) 84844

I¥Y=1234%6789

DO 7 1=2,NTRIAL

CALL RANSER (Cl1,MINPAR, MAXPAR MRAND,IY4NPOINT,NPAR)

CALL LOCMIN (ClsPHILOC+MINPARyMAXPARZEPHIEC,EGRADL,EBDRY MSMSQ,NPU
LINT¢NPAR)

IF{PHI-PHILOC) 7,7,5

PHI=PHILOC

DO 6 J=1,NPAR

CE(JI=CL(Y)

CUNTINUE

WRITE 16,45011)

FURMAT (] 1111777777 ¢77777°

1 FINAL PARAMETER ESTIMATES*////7"*

2 Ctl) ct2) ct3) Cia)
3 cis) /)

WRITE (6+45012) (CE(I),I=1,NPAR)

FORMAT (T15¢F13a74T359F13aT9T559F13e74TT5,F13.79T95,F13.7)
WRITE (64+5013) PHI

FORMAT 11711171117717777°

1 SUM-SQUARED ERROR = *4E15.8)

TIME=RCLUOKL({1.)
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WRETE (6,501%) TIME

5014 FORMAT (/7771177177 THE TIME REQUIR
1ED TC EXECUTE ThI3 PROGRAM WAS®*¢F7.2,' SECONDS.*)
9 IFIK-NSET) 10511411
10 K=K+1
GO ¥C 1
11 CONTINUE
stToe
END
C THIS SUBROUTINE 1S USED WHEN DATA PUINTS LYING ON THE BOUNDARY UOF
c AN ELLIPSE ARE REQUIRED.

SUBROUTINE DATA(CsSIGMA,AVE,NPOINT)
DIMENSION XO0(100)¢Y0(100)sXD(100),YDU100)+C(10)
COMMCN/COM2/X(100),Y(100)
COMMON/COM3I/NGAUS
DATA 128%/° ¢/
WRITE (645001}
5001 FORMAT (*1ENTER DATA SUBRUUTINE.'//)
El=C{1)
E2=C(2)
A=C(3)
B8=C(4)
Th=C(5)
RX=SCRT(1./7EL)
XINT=2,.%RX
XO(1)=—RX
YO(1)=0.
1=2
1 XOU1)=-RX+[#XINT/NPCINT
x0t1+1)=x0(1)
YOULI)=SQRTI{1./E2)*[1.~-El*X0(])**2))
YO(l+1)=~-YOL(1)
=142
IF (I-NPOINT: 14242
2 X0(1)=RX
YOt11=0.
WRITE (6,5002) C{l1),Ct2)

5002 FURMAT (1X,* THE FOLLOWING POINTS ARE THE COORDINATES OF AN ELLIPS
1E HAVING NU DISPLACEMENT FROM THE ORIGIN'/* AND NO ROTATION aABOUT
2THE CORIGIN. THE EQUATION OF THF ELLIPSE IS GIVEN BY ELl®X*X ¢+ E2%Y
3¢y = 1*/* WHERE €1 =*3F1l0.5¢° AND E2 =*,F10.5//)

N$=NPOINT-]
WRITE (645003) (IZ8$,XO(T)eYOU(I)gTx1oNS)yIZ8,XOINPOINT),YOINPOINT)

5003 FURMAT (G(ALs* (' +EL2.59"¢'9EL2.5,%)"))

DO 3 I=14NPOINTY
XDUI)=XO(I)*CUSITH)-YU(I)*SINITH) +A
YDUI)=XO(T)*SIN(TH) ¢YO(T1*COS(TH) +8

3 CONTINUE

DEGREE=(180./3.1415926536)%TH
WRITE (6,5004) C(3),C(4)+DEGREE

5004 FORMAT(//2Xy*THE FOLLOWING POINTS ARE THE COOROINATES OF THE PREVI
20US ELLIPSE WHICH HAS NOW BEEN DISPLACED A =',F10.5/' UNITS IN THE
3 X-DIRECTIONy B =*9yF1l0.5+* UNITS IN THE Y-DIRECTIONs, AND ROTATED 8
3y THETA =*,F10.5,' CEGREES.'//)

WRITE (645005) ([Z$oXDUI)oYDUI)oI=19N$)s128oXDINPOINT),YDI(NPOINT)
5C05 FORMAT (4(ALs*(*9EL2.59%9*9EL2.5+')"))

D0 4 [=1,NPOINT

CALL GAUSS (NGAUSySIGMA,AVE,V)

X{1)=XD{1)+V

CALL GAUSS (NGAUS»SIGMA,AVE,V)
4 Y{I)=YD(T)¢V
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5006

5Co07
5008

5C01

WRITE (6°5006) AVE,SIGMA
FURMAT(/72X,*THE FOLLOWING POINTS ARE THE PREVIOUS POINTS WITH GAU
ISSIAN NOISE ADDED. THE MEAN OF THE NOUISE IS "92E12.57° AND THE STAN
2DARD DEVIATION OF THE NOISE IS *4E12.5//)

WRITE (65,5007) (IZ$oX{T)sY(I)oIn1yNS$S),12Z8sXINPOINT),YINPOINT)
FORMAT (4(ALs%(*sEL2.50%%4EL2.5,%)%))

WRITE (6,5008)

FORMAT (/* EXIT CATA SUBROUTINE?®)

RETURN

END

THIS SUBROUTINE IS USED WHEN DATA POINTS LYING ON THE BOUNDARY OF
A RECTANGLE ARE REQUIRED.
SUBRQUTINE DATA{(CsSIGMA,AVE,NPGINT)
DIFEASION C(5)+X0O(100)eYOUL100)¢XDI100),YD{100)X11100),Y11100),X2¢
1100),Y2(100)+X3(100),Y3(100),X4(100),Y4(100)
CUMMCN/CUM2/X(100),¥(100)
COVMMCN/CUMI/NGAUS

DATA 12%/° ¢/

WRITE (6,5001)

FORMAT ('1ENTER LATA SUBROUTINE.'//)
XMAX=1.0/SQRT(CI(1})
YMAX=1.,0/SQRT(C(2))
A=C(3)

B8=C(4)

TH=C(5)

CTH=COS{TH)

STH=SIN(TH)

YMIN=-YMAX

XMINz=-XMAX

NP=NPCINT /&
XINT=XMAX—XMIN-
YINT=YMAX-YMIN

N=NPe]

DU 1 I=1,N

X1(I)=XMAX
YLUT)=YMING{]I-1)*YINT/NP
DO 2 1=2,NP
X2{{)=xXMAX=(1-1)*eXINT/NP
Y2(1)=YMAX

DU 3 I=1N

X3(1)=XMIN

YI(1 ) =YMAX-(]-1)*YINT/NP
DO 4 [32,NP
XK4(I)=XMIN+{[-1)*XINT/NP
Y4({1)=YMIN

DO 5 I=1N

X0(I)=x1(1)

Yo(li=y1(1)

N=NP+2

NN=2*NP

LO 6 I=NyNN
X0{1}=X2(1-NP)
YOUI)=Y2(1-NP)

N=2%NP+1]

NN=3#NDP+ ]

DU 7 I=N¢NN
XO0(1)=X3({I-2%NP)
YO(I)=Y3(1-2%NP)

N=3&NP+2

NN=4 =NP

DU 8 I=N«NN
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5002

5C03

5004

5C05

10

5C06

5Co7

5008

1
5002

X0(1)=X4(1~3%NP)

YOUI)=Y4(]-3%NP)

WRITE (6,55002) XINT,YIRT

FURMAT (2X,*THL FGLLGWING POINTS LIE ON A RECTANGLE HAVING NO DISP
ILACEMENT FROM THE ORIGIN AND NO ROTATION ABOUT THE ORIGIN.'/*® THE
2RECTANGLE [S CENTERED ABOUT THE ORIGIN AND [S'¢F6.2,' UNITS IN LE
3RGTH IN THE X-CIRECTION AND',F6.2,* UNITS'/* IN LENGTH IN THE Y-D
4IRECTICN. )

N$=NPOINT-1

WRITE (6,5003) (1Z8$+4XOU1),YOUT)s1=14NS),T128,X0{NPOINT),YOINPOINT)
FORMAT (G{ALa*(*E12.5:%9"4E12.5,%3%))

DO 9 I=1,NPOINT

XOCIJ=XO([)¢CTH-YO (I} =STH+A

YOUI)}=XO(1)#STH4YOULI)*CTH+B

WRITE (6,45004) A ByTH

FORMAT (/72X,*THE FOLLOWING PUINTS ARE THE POINTS ON THE PREVIOUS
IRECTANGLE WHICK HAS NOW BEEN TRANSLATED®,F6424% UNITS IN THE'/¢ X
2-DIRECTICN,®F6.2,' UNITS IN THE Y-ODIRECVION, AND ROTATED BY'!,F6.
32, RACIANS.')

WRITE (645005) (1Z$.XD(I),YDEI)oT=1,N8),12Z%,XD(NPOINT) YD(NPOINT)
FORMAT (4(AL+ " ('4E12.5,%9"4E12.5,%1%))

DO 10 I=1+NPCINT

CALL GAUSS{NGAUS,SIGMA,AVE,V)

X(1)1=XD({1) eV

CALL GAUSSINGAUS,SIGMA,AVE,V)

YUI)=YD(I) eV

WRITE (64,5006) AVE,SIGMA

FORMAT(//2X,"THE FOLLOWING POINTS ARE THE PREVIOUS POINTS WITH GAU
1SSIAN NOISE ACCED. THE MEAN OF THE NOISE IS *,E12.5/' AND THE STAN
20ARD DEVIATIUN GF THE NCISE 1S *,E12.5/7)

WRITE (6,5007) (28, X01).Y(1},1=1,N$),128,XINPOINT),YINPOINT)
FORPAT {GtALy" (' )E12.59%2"9E12.5,%)%))

WRITE (645008}

FORMAT (/' EXIT DATA SUBROUTINE')

RETURN

ENC

SUBRCUTINE SUMSQR (CsPHI KX NSMSQyNPUOINTNPAR)

DINENSTUN C{10),F(100}

COMMCN/COML/FSTCP

COMMCN/CUMZ/XL1CU)sYL10C)

NSMSC=NSMSC+1

KX=0

PHI=0.

£E1=C(1)

£E2=C(2)

A=C(3)

B=C(4)

TH=C(5)

CTH=COS{TH)

STH=SINITH)

DO 2 1=14NPGINT

FUD)=E1 o0 (X(T)-A)*«CTHH{Y(T)-B)*STH)*#24E2%(~(X{1)-A)*STHH{Y(]1)-B)*
1CTH) #2-1,

IF (ABSIF(I))-FSTOP) 2,41,1

KX=1{

WRITE (645002) (C{K),K=1,NPAR)

FORMAT ' THE SYSTEM IS UNSTABLE FOR THESE PARAMETER VALUES. THE §
TUM~SQUARED ERROR WILL NOT BE EVALUATED. THE PARAMETERS ARE'/* C(1)
2 =',F15.8," Cl2) ='4E15.8,' C{3) =',F15.8,* Cl4) =*,E15.8,' C{5) =
3',E15.8)

GO TG 3
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5001

3

4
5002

9
10

11

5C03

5004

5005

12
13
14
5C06
15

16

PHI = pHL * Er)xF (1)
CONT INUE

RETURN

END

SUBROUTINE LOCMIN (Cl,PHIsMINPARyMAXPARJEPH]ECyEGRAD,EBDRYyMSMSQ,
INPOINT,NPAR)

DIMENSIUN C{10),C1(10)+GRADP(10)+BETA{10),DELTAC(10)

REAL MINPAR{10),MAXPARL10)

NSMSC=0

NS=0

ND=0

WRITE (64+5001)

FORMAT (*LENTER LOCMIN SUBROUTINE.®*)

CALL REGRES (C1lyGRACP,BETAsPHI,NPOINT,NPAR)

PHIINT=PHI

cSC=0

DO 2 I=1,NPAR

CSQ=CSQ+CLITI*CL(I)

GRACPS=0.

DO 3 1=1,NPAR

GRACPS=GRADPS+GRADP(I)*GRADP(])

[F(GRADPS-EGRAD) 445,45

WRITE (6,5002) GRADPS

FORMAT (/' ThE CGRADIENT CCNDITION IS SATISFIED. THE GRADIENT MAGNI
LTUDE SQUARED IS GRACS = *,E15.8)

GO TC 32

LU &6 T=14NPAR

CII)=CL{T)+BETALI)

LU B I=1sNPAR
IFLC(I)-MINPARIIT)
TFIC{T)-MAXPARL(IT)
CONTINUE

CALL SUMSCR (CoPHIREGIKXyNSMSQyNPOINT,NPAR)

IFIKX) 999,21

[F(PHIREG-PHI) 10+22,22

DO 11 I=1.NPAR

cLen=cen)

DELTAC(L)=BETAL(LI)

WRITE (6+45003) PHIREG

FORMAT (/* THE FULL GAUSS-NEWTON STEP YIELDS A SMALLER VALUE FOR
1PHI wlTHOUT VIOLATING®/* ANY CONSTRAINTS. THE NEW VALUE FOR PHI 1S
2 PHl = ',EL15.8)

WRITE (645006)

FURMAT (/°* H crne*n

WRITE (695005) (1,C1(1)y1=1,NPAR)

FORMAT (110,E20.8)

ODPHI=(PHI-PHIREG)}/PHI

PHI=PHIREG

GU TC 13

UPHI=(PHI-PHIGRA)/PHI

PHI=PHIGRA

TF(UPHI-EPHI) l4y14,15

WRITE (6+5006) CPHI

FORMAT (/' THE NORMALIZED SUM-SQUARED ERROR CHANGE CRITERION IS SA
LTISFIED. DPHI = *,E15.8)

GO TG 32

DELCSQ=0.

D0 16 I=1,NPAR

DELCSQ=DELCSQ+DELTAC(I)*DELTAC!])

DC=DFLCSQ/CSQ

LE(DC-EC) 17417418

) 2042047
) B8420,20
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17
5C07

18
19
5008
20
5C09

21
5C10

22
5011

23
24

5012

5013

25

217

28

29

5014

5015

5016

30
5017

51
5118

5217

WRITE {6,5007) CC
FORMAT (/* THE PARAMETER CHANGE ERROR CRITERION IS SATISFIED. DC =
1 *,E15.8)

GO TC 32

IF{NSMSQ-NMSMSQ) 1,194+19
WRITE (6,5008)

FURMAT (/' THE LCOP COUNT CRITERION IS SATISFIED.')

G0 TO 32
WRITE (6,5009)

FORMATY (/% THE GAUSS~NEWTON PARAMETER CHANGE VECTOR VIOLATES THE
LRANGE CONSTRAINTS.'/* A NEWTON-RAPHSON STEP WILL BE TRIED.')

6 ¥C 23

WRITE (6+5010)

FORMAT (/°* THE GAUSS—NEWTCN STEP YIELDED AN UNSTABLE VALUE FOR PH
1l THEREFURE,;*/* A NEWTUN-RAPHSON STEP WILL BE TRIED.')

60 TC 23

WRITE (6,5011)

FORMAT (7' PHI OUBTAINED FROM THE GAUSS—NEWTON STEP WAS GREATER TH
1AN PHI BEFORE THE STEP WAS TAKEN.'/® THEREFORE, A NEWTON-RAPHSON S
2TEP WILL BE TRIELC.®)

DO 24 1=14NPAR

DELTAC(I)=—(PHI*GRACP(1))/GRADPS

CiI)=Cl(I)+CELTACI(T)

ARITE (6,5012)

FORMAT (* THE FULL NEWTCN-RAPHSON STEP IS*//°¢ 1 DE
ILTACII) ctry*7z)

WRITE (6,5013) (l,DELTAC(I)+C(I),1=1,NPAR)

FURMAT (110+5X,E15.845X,F15.8)

DO 26 T1=1,NPAR

TFICUI)-VMINPARL]

IF(CII)-MAXPAR(]

CUNTINUE

CONT INUE

BINSCL=2,#%%NS

U0 28 T=]1,NPAR

DELTAC(I)=DELTAC(I)/BINSCL

CALL GRASER {(PHIINT,CleNSyDELTAC,KXyNSMSQ,NPOINT,NPAR)

PHIGRA=PHI INT

NT=NS

NS=NC

ND=NT

IF (KX) 29529432

WRITE (645014) NDoNS

FORMAT (/°* THFE LPTINMUM CELAY SCALE FACTOR FOUND FRUM THE GRASER S
TUBROUTINE wAS N = *,[2," AND THE INITIAL DELAY SCALE FACTUR TO BE®
2/' USED FUR THE NEXT GRASER SUPROUTINE (IF IT IS CALLED AGAIN DURI
ING THIS LOUCMIN SUBRCUTINE) IS N = *,]12)

WRITE (645015) PRIGRA

FORMAT (/' THE GRASER SUBRUUTINE FOUND PHI = *'4,E15.8,' AND THE PA
LRAMETERS TO BE'//° o1 Cl(r)*7z)

WRITE (6+5016) {1,Cl(I)yeI=14NPAR)

FORMAT (11045X,E20.8)

GU TC 12

WRITE (6,45017)

FUORMAT (/° THE NEWVTON-RAPHSON STEP VIOLATES THE RANGE CONSTRAINTS
1.'/* GRADIENT PROJECTION AND EXTRAPOLATION FOLLOW.®)

CALL GRPREX (ClyUELTAC,MINPARyMAXPAR,GRADPsKEXIT,EBDRY,NPAR)

THIKEXIT) 27,27431
WRITE {6,5018) PH!

FORMAT (/' THE CUNSTRAINED MINIMUM [S PHI = *,E15.8,' AND THE PARA
IMETERS ARE'//?* 1 ci{11+z7)

WRITE (645019) (1,CL(1)sI=1sNPAR)

FORMAT (110,5X,F15.8)

)) 30025,25
1) 26426430
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32

5020

5001

5002

5C03

5004

5009

5006

3

5CO7

5008

CUNTINuE

WRITE (6,5020) NSMSQ

FORMAT(//* £XIT LOCMIN SUBROUTINE. NSMSQ = °*,14)
RETURN

END

SUBRQUTINE RFGRES(C,GRALP,BETA,PHI,NPOINT,NPAR)

DIMENSION C(10)4sGRADPIU10)BETA(10)F{100)9Z(100+5)9S(5¢5)9L(5)sM(
15}

COFMNCN/COM2/X11CO),Y(100)

WRITE (6+5001)

FORMAT (/° ENTER REGRES SUBROUTINE.')

El=C(])

€E2=C(2)

aA=C{3)

d=C{4)

TH=C(5)

CTH=COS(TH)

STH=SIN{TH)

DO 1 T1=1,NPOINT

Lo )= IXII)-A)*CTHe({Y(I)~B)*STH)®%2
2U1,2)=(=IX([)-A)SSTH#(Y(I)-B)*CTH)*#2
LU1,33)=2.5(E12CTH®224E2%STH*%2)% (=X (1)4A) + 2.%(EL-E2)sSTH®CTH*(-Y
L{l)eB)

I(1e4)32.%(E)-F2)¢STHECTHE{-X(T1)+A) ¢ 2.%(ELSSTHR®2+E£2%(THER2)} (Y
1(I)eB)
20159)=2.2(E1-E2)2L1-(X(1)~A)*#2+(Y(1)-B)*#2)sCTH*STH+{X(T)-A)*{Y{(
11)=-B)*{CTH*#%2~-STHe%2))
FII)=EL*®(IX{I)—A)RCTH+(Y(1)~B)*STH)*%2¢E2%(-(X{[)-A)*STH+IlY(1)-B)*
1CTH) #%2-1],

WRITF (645002)

FURNMAT (/7/° 1 Ills1) Z(1,2) z
1t1,3) L{ly4) Z(1+5) Fll)*/)
WRITE (645003) (03281 e1)a20102)0201¢3)02(T144)eZ(1,45),Fll), I=1,
INPT2)

FORMAT (I5,5X,6E18.8)

DD 2 J=1+NPAR

DU 2 J=1oNPAR

St1eJd)=0.

DO 2 K=1+APCINT

SUT9J)=SIIyJ)eZ (K 1)*LIKyJ)

WRITE (645004)

FURMAT (/7 I S(1,1) Stl,2) S
1{I,3) S(ly4) S(I+5)°%/)

WRITE (695005) (1seSUIeLl)eSUIs2)9S(93)9S019414S(1s5)y1=1,NPAR}
FORMAT (15+5X,5E18.8)

CALL MINVISoNPARyDyL¥)

WRITE (6+50006)

FURMAT (//* THE FOLLOWING ARRAY CONTAINS THE ELEMENTS QF S INVERSE

le HCWEVER, THEY WILL STILL BE DENOTED BY S.'//°* 1 S
201,41} St1,2) S(I,3) S(l.4)
3 S(Is51°%7)

WRITE (645009) (1eSCIp1)eSUTe2)¢S{T43)9sS(194)9S(145),12]1yNPAR)

DO 3 I=1+NPAR

GRACP(I)=0.0

DU 3 J=LoNPOINT

GRACP(I)=CRADP(1)42.,0%Z(J,s1)%F(J)

WRITE (6¢5Q007)

FORMAT (/7" GRADPHIC(]) GRADPHI (2) GRA
IDPHI(3) GRADPHI(4) GRADPHIS)*/)

WRITE (645008) (LRADP(I1),I=1,NPAR)

FORMAT (10X,5F18.8)
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5C09

5010

$C11

5C01

2
5002

5CC3

T ~O

10

11
12

13
L&
15

le
17
5004

D0 4 l=1,NPaAR

BETA(1)=0.

DU 4 J=1,NPAR
BETA(T)=BETA(I)~(1e/2.1%(S{[4J)*GRADP(J)}
PHI=0.

DO 5 I=1,NPOINT

PHIzPHI+F(T)*F (1)

WRITE (6,5009) :
FORNMAT (/77 ctL) ci2) ci3) cls) cis)
1 BETA(L) BETAL2) BETA(3) BETAL4) BETA(S) PHI'/)
WRITE (6450100 (C(I),I=1,NPAR),(BETA(I)sI=1,NPAR),PHI

FURMAT (10({F10.5,1X)4E9.2}

WRITE (6,5011)

FORMAT (/¢ EXIT REGRES SUBRUUTINE.®)
RETURN

END

SUBRGUTINE GRASER (PHI+ClyNsDELTAC,KX,NSMSQ,NPOINT,NPAR)
DIMENSION C1(10),C(10),DELTAC{10),DELCMN(10)
WRITE (6,5001)

FORMAT (//°% ENTER GRASER SUBROUTINE.®)

DU 1 I=1,NPAR

CtIN=CLCLI)+DELTACID)

CALL SUMSQR (CyPHI2+sKX9yNSMSQyNPOINT,NPAR)
[FEKX) 343,42

WRITE {6+5002)

FORMAT (/' INITIAL CELTAC RESULTS IN AN UNSTABLE SOLUTION.'/* EXII
1 GRASFR SUBROUTINE.'//)

w0 TC 39

DO 4 I=1,NPAR

DELTACt{I)=DELTAC(I) /2.

C{I}=CL{T)+DELTAC(])

CALL SUMSQR (CyPHIL+KXyNSMS5Q,NPOINTNPAR)
IFLIKX) 690645

WRITE (64+5003)

FORMAT (/' THE STABLE REGION IN PARAMETER SPACE IS NOT CONVEX.'/?
LEXIT GRASER SUBRUUTINE.'//)

60 1C 39

IF(PHILI-PHI2) 9,97

IF(PHI2-PHI) 16+8,8

PHI2=PHI

N=N+1

GO TC 3

VU 10 J=1,NPAR

DELTAC(I)=DELTACIT1)/2.

COL)=CLOI}+DFLTACIT)

N=N+1

CALL SUMSGR (CoyPHIDWKX¢NSMSQ,NPOINT,NPAR)
TFIKX) 1141145

IFIPHIL-PHIO) 13,413,12

PHIZ2=PHII

PHI1=PHIO

Gu TC 9

IF(PHIL-PHLI) lb,l4,sl2

Dy 15 I=1,NPAR

DELTAC(1)=2.%DELTAC(T)

6O TC 32

IFIN) 17,17,19

WRITE (645004)

FORMAT (/* THE STEP FOR N=0 IS LOCALLY MINIMIZING.'/* EXIT GRASER
1SUBRGUTINE.*//)

DO 18 I=1,NPAR
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18 CLUI)=CL(T1)+2.,*CELTAC(I)
PHI=PHI2
GO TG 239
19 DO 20 I=1,NPAR
DELTAC(1)=4.%DELTAC(T)
20 CeI)=CL(I)«DELTAC(I)
21 N=N-1
PHIO=PHII
PHIL=PHI2
CALL SUMSQR (CsPHI2,KXyNSMSQNPOINT,NPAR)
IFIKX) 23423,22
22 WRITE (645005}
5005 FORMAT {/' DECREASING N HAS CAUSED THE SEARCH TO ENTER AN UNSTABLE
1 REGIUN.,*/* EXIT GRASER SUBROUTINE.'//)

60 TG 39
23 IF(PHIL1-PHI2) 30,24,424
24 [FIN) 25425428
25 PHI=PHI[2

WRITE (6,5006)
5006 FURMAT (/' CECREASING N HAS REDUCED N TO ZERO."/*' EXIT GRASER SUBR
LUUTINFL./ /)

26 00 21 [=14NPAR

217 Ct{I)=Cl(I)+CELTAC(])
G0 TC 39

28 DU 29 I=1,NPAR
DELTAC(I)=2,.*DFELTAC(I)

29 ClI=CL1)+DELTACI(T)
Gu TC 21

30 D0 31 I=1,NPAR

31 VDELTAC(I)=DELTAC(I)/2.
N=N+1

32 CUACMN= (3,74 )% (PHI2-5.%PHI 144, %¥PHIO)/(PHI2-3.%#PHI1+2.%PHIO)

DC 33 I=1,NPAR
DELCHNUTI)=QUACMN*DELTACI(])
33 CUI)=CL{I)+CELCMNIT)
CALL SUMSCR (CoPHIMIN KXy NSMSQyNPOINT4NPAR)
TFIKX) 34,434,5

34 F{PHFIMIN-PHI1) 35,37,37
35 GU 36 I=14NPAR
36 CliI)=Cl(1)+CELCMNIT)

PHI=PFIMIN
WRITE (645007) PHI
5C07 FORMAT (/* THE CQUACRATIC FIT FORMULA WAS USED TO COMPUTE DELTAC. T
IHE MINIMUM VALUE FOUND FOR PHI WAS PHI = *,E15.8,/7' EXIT GRASER SU
?BROUTINE.'//)

0 TU 39
37 PHI=PHI]
DO 38 I=1,NPAR
8 CLIE)=CL{I}+DELTACIT)

WRITE (6,5008) PHI

5008 FURMAT (/* THE BINARY MINIMUM IS LOWER THAN THE QUADRATIC MINIMUM,
1 THE MINIMUM VALUE FCUND FOR PHI WAS PHI = ',E15.8,/' EXIT GRASER
2SUBROUTINE.'//)

39 CONTINUE
RETURN
END

SUBRGUTINE GRPREX (CsDELTAC,MINPAR,MAXPAR,GRADP KEXIT,EBDRY,NPAR)
DIMENSION C(10)4GELTAC{10)+GRADP{10),CONBNDI(10)

REAL KOWKSTEP MINPAR(10)+MAXPAR(1C)

INTEGER CONBNC,CINDEX

WRITE (6,5001)
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5001 FORMAT(/® ENTER GRPREX SUBROUTINE.')
CINDEX=0
K0=0.,
KEXIT=0
DO 5 I=1,NPAR
CONBAD(1)=0
IF(C{I)-MINPARII)-EBDRY) lel,3
TFIGRAGPLT)) 5,2,2
GRADP(1)=0.
CINDEX=CINDEX¢1
CONBND(I}=1
GU TU S
3 TF(C(I)-MAXPAR(I)+EBDRY) Se444
4 IF(GRADPII)) 2,2,5
5 CUNTENUE
IFICINDEX=NPAR) 8:6+6
6 WRITE (6+5002)
5002 FURMAT (/' THE SEARCH PROCEDURE HAS ATTAINED A CONSTRAINED MINIMUM
1.%/* EXIT GRPREX SUBROUTINE.*Z/)

N

KEXIT=]1
DO 7 I=14NPAR
7 DELTACII)=0.
GU Tu 17
8 DO 15 I=1,NPAR
FFICUNBNO(I)) 949,15
9 IF{GRADP(I)) 10,15+11
10 KSTEP=(C(1)-MAXPARI(T))/GRADP(TI)
GU TC 12
11 KSTEP=(C(1)-MINPARIT))/GRADPLI)
12 TF(KO) l4s14,13
13 TF(KSTEP-KO) 14,415,415
14 KO=KSTEP
15 CONTINUE
DO 16 [=1:NPAR
16 NELTAC(T)=—KO*GRACP(1)
WRITE (64,5003}
5C03 FURMAT (//°* DELTACI(1) DELTAC(2) DEL
1TAC(3) CELTAC(4) DELTAC(S)*/)

WRITFE (645004) (DELTACIL),I=1¢NPAR)
5004 FORMAT (10X,5E18.8)
WRITE (6,5005)
5005 FORMAT (/°* GRADIENT PRUJECTION AND EXTRAPOLATION TO A BUUNDARY HAS
I BEEN ACCOMPLISHED.*/* EXIT GRPREX SUBROUTINE.?')
17 CUNT INUE
RETURN
ENE

SUBRUUTINE RANSER (C1,MINPAR,MAXPAR MRAND, lY.NPOINT,NPAR)
CIMENSION C1(10),CC10)4C(10)
REAL MINPAR(10),MAXPARI10)
WRITE (6,45001)
5C01 FURMAT (*LIENTER RANSER SUBROUTINE.®/)
NSMS5C=0
DU 1 I=1,NPAR
1 DUT)=MAXPAR(I)-MINPAR{I)
IX=1y
2 I=1
3 CUNTINUE
CALL RANDUIIX,1Y,YFL)
IX=1v
ClUI)=MINPAR(T)+L(I)*YFL
[=1+1
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5C02

7

8
9

10
11

5003

5004

5C05

5006

IF (1-NPAR) 3,13,4
CALL SUMSQR (C1,PHIKX,NSMSQsNPOINT,NPAR)

IF (KX) 54542

WRITE (6,5002) NSMSC

FORMAT (' RANCCM SEARCHING HAS ESTABLISHED A STARTING VALUE FOR PH
21. NSMSQ =*13/)

DC 11 1=2,MRAND

J=1

CONT INUE

CALL RANDULIX,1Y,YFL)

Ix=1v

ClJ)=PINPARLJ)¢CLI) *YFL

J=J+l

IF (J-NPAR) 646,17

CALL SUMSQR (CyPHIRAN.KX,NSMSQ.NPOINT,NPAR)

IF (KX) HeHoll

IF (PHI-PHIRAN) 11l.11,9

PHI=PHIRAN

UC 10 Jd=1,NPAR

cLeN=Ccty

CUNTINUE

WRITE (6,5003) PHI

FORMAT (/% THE SMALLEST VALUE FOUND BY THE RANSER SUBROUTINE FOR T
1HE SUM=SQUARED ERROR IS PHI = 'E15.8//)

WRITE (6,5006)

FURMAT (® MINIMIZING PARAMETER
1 VALUES®//* ctl) ct2) ci3)
2 Cla) Ci5)1/)

WRITE (6,5005) (C1(I)sI=1,NPAR)

FURMAT (SXgF1045,4{10X,F10.5))

WRIIE (6,5C06)

FURMAT (/' EXIT RANSER SUBROUTINE.')

RETURN
END
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